首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of tumor suppressor p53 induces apoptosis or cell cycle arrest depending on the state and type of cell, but it is not fully understood how these different responses are regulated. Here, we show that Puma and Noxa, the well-known p53-inducible proapoptotic members of the Bcl-2 family, differentially participate in dual pathways of the induction of apoptosis. In normal cells, Puma but not Noxa induces mitochondrial outer membrane permeabilization (MOMP), and this function is mediated in part by a pathway that involves calcium release from the endoplasmic reticulum (ER) and the subsequent caspase activation. However, upon E1A oncoprotein expression, cells also become susceptible to MOMP induction by Noxa, owing to their sensitization to the ER-independent pathway. These findings offer a new insight into differential cellular responses induced by p53, and may have therapeutic implications in cancer.  相似文献   

2.
3.
4.
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-xL bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-xL or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.  相似文献   

5.
6.
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.Subject terms: Apoptosis, Immune cell death  相似文献   

7.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

8.
9.
The mechanism of p53-dependent apoptosis is still only partly defined. Using early-passage embryonic fibroblasts (MEF) from wild-type (wt), p53(-/-) and bax(-/-) mice, we observe a p53-dependent translocation of Bax to the mitochondria and a release of mitochondrial Cytochrome c during stress-induced apoptosis. These events proceed independent of zVAD-inhibitable caspase activation, are not prevented by dominant negative FADD (DN-FADD), but are negatively regulated by Mdm-2. Bcl-x(L) expression prevents the release of mitochondrial Cytochrome c and apoptosis, but not Bax translocation. At a single-cell level, enforced expression of p53 is sufficient to induce Bax translocation and Cytochrome c release. Real-time RT-PCR analysis reveals a significant induction of RNA expression of Noxa and Bax in p53(+/+), but not in p53(-/-) MEF. Noxa protein expression becomes detectable prior to Bax translocation, and downregulation of endogenous Noxa by RNA interference protects wt MEF against p53-dependent apoptosis. Hence, in oncogene-expressing MEF p53 induces apoptosis by BH3 protein-dependent caspase activation.  相似文献   

10.
11.
12.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

13.
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.  相似文献   

14.
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.  相似文献   

15.
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons.  相似文献   

16.
17.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   

18.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.  相似文献   

19.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

20.
Apoptosis is initiated when Bcl-2 and its prosurvival relatives are engaged by proapoptotic BH3-only proteins via interaction of its BH3 domain with a groove on the Bcl-2-like proteins. These interactions have been considered promiscuous, but our analysis of the affinity of eight BH3 peptides for five Bcl-2-like proteins has revealed that the interactions vary over 10,000-fold in affinity, and accordingly, only certain protein pairs associate inside cells. Bim and Puma potently engaged all the prosurvival proteins comparably. Bad, however, bound tightly to Bcl-2, Bcl-xL, and Bcl-w but only weakly to A1 and not to Mcl-1. Strikingly, Noxa bound only Mcl-1 and A1. In accord with their complementary binding, Bad and Noxa cooperated to induce potent killing. The results suggest that apoptosis relies on selective interactions between particular subsets of these proteins and that it should be feasible to discover BH3-mimetic drugs that inactivate specific prosurvival targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号