首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Previous work has shown that several nucleoporins, including Nup62 are degraded in cells infected with human rhinovirus (HRV) and poliovirus (PV) and that this contributes to the disruption of certain nuclear transport pathways. In this study, the mechanisms underlying proteolysis of Nup62 have been investigated. Analysis of Nup62 in lysates from HRV-infected cells revealed that Nup62 was cleaved at multiple sites during viral infection. The addition of purified HRV2 2A protease (2Apro) to uninfected HeLa whole cell lysates resulted in the cleavage of Nup62, suggesting that 2Apro is a major contributor to Nup62 processing. The ability of purified 2Apro to cleave bacterially expressed and purified Nup62 demonstrated that 2Apro directly cleaves Nup62 in vitro. Site-directed mutagenesis of putative cleavage sites in Nup62 identified six different positions that are cleaved by 2Apro in vitro. This analysis revealed that 2Apro cleavage sites were located between amino acids 103 and 298 in Nup62 and suggested that the N-terminal FG-rich region of Nup62 was released from the nuclear pore complex in infected cells. Analysis of HRV- and PV-infected cells using domain-specific antibodies confirmed that this was indeed the case. These results are consistent with a model whereby PV and HRV disrupt nucleo-cytoplasmic trafficking by selectively removing FG repeat domains from a subset of nuclear pore complex proteins.  相似文献   

2.
Translation directed by several picornavirus IRES elements can usually take place after cleavage of eIF4G by picornavirus proteases 2Apro or Lpro. The hepatitis A virus (HAV) IRES is thought to be an exception to this rule because it requires intact eIF4F complex for translation. In line with previous results we report that poliovirus (PV) 2Apro strongly blocks protein synthesis directed by HAV IRES. However, in contrast to previous findings we now demonstrate that eIF4G cleavage by foot-and-mouth disease virus (FMDV) Lpro strongly stimulates HAV IRES-driven translation. Thus, this is the first observation that 2Apro and Lpro exhibit opposite effects to what was previously thought to be the case in HAV IRES. This effect has been observed both in hamster BHK and human hepatoma Huh7 cells. In addition, this stimulation of translation is also observed in cell free systems after addition of purified Lpro. Notably, in presence of this FMDV protease, translation directed by HAV IRES takes place when eIF2α has been inactivated by phosphorylation. Our present findings clearly demonstrate that protein synthesis directed by HAV IRES can occur when eIF4G has been cleaved and after inactivation of eIF2. Therefore, translation directed by HAV IRES without intact eIF4G and active eIF2 is similar to that observed with other picornavirus IRESs.  相似文献   

3.
2A protease of the pathogenic coxsackievirus B3 is key to the pathogenesis of inflammatory myocarditis and, therefore, an attractive drug target. However lack of a crystal structure impedes design of inhibitors. Here we predict 3D structure of CVB3 2Apro based on sequence comparison and homology modeling with human rhinovirus 2Apro. The two enzymes are remarkably similar in their core regions. However they have different conformations at the N-terminal. A large number of N-terminal hydrophobic residues reduce the thermal stability of CVB3 2Apro, as we confirmed by fluorescence, western blot and turbidity measurement. Molecular dynamic simulation revealed that elevated temperature induces protein motion that results in frequent movement of the N-terminal coil. This may therefore induce successive active site changes and thus play an important role in destabilization of CVB3 2Apro structure.  相似文献   

4.
The 2A proteinase (2Apro) is an enterovirally encoded cysteine protease that plays essential roles in both the processing of viral precursor polyprotein and the hijacking of host cell translation and other processes in the virus life cycle. Crystallographic studies of 2Apro from enterovirus 71 (EV71) and its interaction with the substrate are reported here. EV71 2Apro was comprised of an N-terminal domain of a four-stranded antiparallel β sheet and a C-terminal domain of a six-stranded antiparallel β barrel with a tightly bound zinc atom. Unlike in other 2Apro structures, there is an open cleft across the surface of the protein in an open conformation. As demonstrated by the crystallographic studies and modeling of the complex structure, the open cleft could be fitted with the substrate. On comparison 2Apro of EV71 to those of the human rhinovirus 2 and coxsackievirus B4, the open conformation could be closed with a hinge motion in the bII2 and cII β strands. This was supported by molecular dynamic simulation. The structural variation among different 2Apro structures indicates a conformational flexibility in the substrate-binding cleft. The open structure provides an accessible framework for the design and development of therapeutics against the viral target.  相似文献   

5.
T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.  相似文献   

6.
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5′-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2Apro) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2Apro variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2Apro or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2Apro. These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.  相似文献   

7.
The yeast two-hybrid system has been used to identify mammalian clones that interact with poliovirus 2A proteinase (2Apro). Eight clones which encode previously unidentified human proteins were selected from a HeLa cell cDNA expression library. In addition, five clones encoding short peptides that interact with poliovirus 2Apro were also identified. The lengths of these peptides range from 6 to 30 amino acids, but all of them contain the Leu-X-Thr-Z motif (X represents any amino acid; Z represents a hydrophobic residue). This sequence is invariably located just at the carboxy terminus of each peptide. This approach raises the possibility of designing substrate analogue inhibitors of 2Apro. Thus, two nonhydrolyzable peptides containing the Leu-X-Thr-Z motif prevented cleavage of eukaryotic initiation factor 4G by poliovirus 2Apro in vitro. A more general method for identifying peptides with antiproteinase activity is discussed.  相似文献   

8.
Human rhinoviruses (HRVs) from the HRV-A, HRV-B, and HRV-C species use encoded proteases, 2Apro and 3Cpro, to process their polyproteins and shut off host cell activities detrimental to virus replication. Reactions attributed to 2Apro include cleavage of eIF4G-I and -II to inhibit cellular mRNA translation and cleavage of select nucleoporin proteins (Nups) within nuclear pore complexes (NPCs) to disrupt karyopherin-dependent nuclear-cytoplasmic transport and signaling. Sequence diversity among 2Apro proteases from different HRV clades, even within species, suggested individual viruses might carry out these processes with unique mechanistic signatures. Six different recombinant 2Apro proteases (A16, A89, B04, B14, Cw12, and Cw24) were compared for their relative substrate preferences and cleavage kinetics using eIF4G from cellular extracts and Nups presented in native (NPC) or recombinant formats. The enzyme panel attacked these substrates with different rates or processing profiles, mimicking the preferences observed during natural infection (A16 and B14). For eIF4G, all 2Apro proteases cleaved at similar sites, but the comparative rates were species specific (HRV-A > HRV-C ≫ HRV-B). For Nup substrates, 5 of the 6 enzymes had unique product profiles (order of Nup selection) or reacted at different sites within Nup62, Nup98, and Nup153. Only A16 and A89 behaved similarly in most assays. Since each type of karyopherin receptor prefers particular Nups or uses a limited cohort of binding motifs within those Nups, the consequences of individual 2Apro avidities could profoundly affect relative viral replication levels, intracellular signaling, or extracellular signaling, all of which are underlying triggers for different host immune responses.  相似文献   

9.
10.
Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.  相似文献   

11.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   

12.
Cell-specific regulation of Fas exon 6 splicing mediated by Hu antigen R   总被引:1,自引:0,他引:1  
The differential expression levels of T-cell intracellular antigens (TIA) and Hu antigen R (HuR) are concomitant with a splicing switch in apoptosis receptor Fas in HCT-116 cells. Thus, overexpression and knockdown of HuR led to Fas exon 6 skipping and inclusion, respectively. These results suggest that the TIA and HuR cellular ratio influences cell-type specific Fas exon 6 splicing pattern.  相似文献   

13.
Fas is a transmembrane cell surface protein recognized by Fas ligand (FasL). When FasL binds to Fas, the target cells undergo apoptosis. A soluble Fas molecule that lacks the transmembrane domain is produced from skipping of exon 6 encoding this region in alternative splicing procedure. The soluble Fas molecule has the opposite function of intact Fas molecule, protecting cells from apoptosis. Here we show that knockdown of hnRNP A1 promotes exon 6 skipping of Fas pre-mRNA, whereas overexpression of hnRNP A1 reduces exon 6 skipping. Based on the bioinformatics approach, we have hypothesized that hnRNP A1 functions through interrupting 5′ splice site selection of exon 5 by interacting with its potential binding site close to 5′ splice site of exon 5. Consistent with our hypothesis, we demonstrate that mutations of the hnRNP A1 binding site on exon 5 disrupted the effects of hnRNP A1 on exon 6 inclusion. RNA pull-down assay and then western blot analysis with hnRNP A1 antibody prove that hnRNP A1 contacts the potential binding site RNA sequence on exon 5 but not the mutant sequence. In addition, we show that the mutation of 5′ splice site on exon 5 to a less conserved sequence destructed the effects of hnRNP A1 on exon 6 inclusion. Therefore we conclude that hnRNP A1 interacts with exon 5 to promote distal exon 6 inclusion of Fas pre-mRNA. Our study reveals a novel alternative splicing mechanism of Fas pre-mRNA.  相似文献   

14.
Enteroviruses can be easily transmitted through the fecal-oral route and cause a diverse array of clinical manifestations. Recent outbreaks associated with enteroviral contamination in aquatic environments have called for the development of a more efficient and accurate virus monitoring system. To develop a simple, rapid, and direct method for identifying enteroviral infections, we generated a fluorescent reporter system in which genetically engineered cells express a hybrid fluorescent indicator composed of a linker peptide, which is exclusively cleaved by the 2A protease (2Apro), flanked with a cyan fluorescent protein (CFP) and a yellow fluorescent protein undergoing fluorescence resonance energy transfer. The covalent linkage between two fluorophores is disrupted due to 2Apro activity upon viral infection, which results in an increase in CFP intensity. This allows the rapid (within 7.5 h) detection of very low numbers (10 PFU or fewer) of infectious enteroviruses.  相似文献   

15.
16.
17.
Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap‐binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut‐off host–cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot‐and‐mouth disease virus (FMDV) leader proteinase (Lbpro), human rhinovirus 2 (HRV2) 2A proteinase (2Apro) and coxsackievirus B4 (CVB4) 2Apro with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed 13C/15N sequential backbone assignment of human eIF4GII residues 551–745 and examined their binding to murine eIF4E. eIF4GII551–745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain‐like Lbpro only forms a stable complex with eIF4GII551–745 in the presence of eIF4E, with KD values in the low nanomolar range; Lbpro contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin‐like 2Apro from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with KD values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut‐off.  相似文献   

18.
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.  相似文献   

19.
Abstract. Poliovirus is a small icosahedral particle consisting of only five species of macromolecules: 60 copies each of the capsid protein VP1-4; and one copy of single-stranded RNA, approximately 7500 nt long. The genome, linked at the 5′ end to a small protein VPg and 3′ polyadenylylated, is of plus strand polarity. After receptor-mediated uptake of the virus and release of the RNA into the cytoplasm, the genome serves as mRNA, encoding only a single polypeptide, the polyprotein. The polyprotein is cleaved co-translationally into numerous polypeptides by its own, internal proteinases 2Apro, 3Cpro and 3CDpro. Initiation of translation is mediated by a novel genetic element, called internal ribosomal entry site (IRES). IRES elements, which are 400 nt long RNA segments located within the 5′ non-translated region of the viral genome, are common to all picornaviruses. Their function renders translation of picornavirus mRNAs cap- and 5′-independent, an observation that has upset the dogma of cap-dependent translation in eukaryotic cells. IRES elements have also been used to genetically dissect the viral genome and to construct novel expression vectors. Genome replication is not fully understood, the major conundrum being the initiation of RNA synthesis by the primer-dependent viral RNA polymerase 3Dpol, a process leading to VPg-linked RNA products. Nearly all non-structural proteins appear to be involved in initiation, the proteinases 2Apro and 3CDpro included. A HeLa cell-free system has been developed that, on programming with plasmid-transcribed viral RNA, will perform viral translation, protein processing, RNA replication, and assembly of capsid protein and newly made genomic RNA. The final yield is infectious poliovirus. This result has nullified the dictum that no virus can replicate in a cell-free medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号