共查询到20条相似文献,搜索用时 46 毫秒
1.
Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators. 相似文献
2.
3.
Batten disease (BD)—also known as juvenile neuronal ceroid lipofuscinoses—is an inherited neurodegenerative disorder caused by CLN3 gene mutations. Although CLN3-related oxidative and mitochondrial stresses have been studied in BD, the pathologic mechanism of the disease is not clearly understood. To address the molecular factors linked to high levels of oxidative stress in BD, we examined the expression of mitochondria-related metabolic molecules, including pyruvate dehydrogenase (PDH), ATP citrate lyase (ACL), and phosphoenolpyruvate carboxykinase (PEPCK), as well as the apoptosis-related ganglioside, acetyl-GD3. We observed an increased expression of PDH and a decreased expression of ACL, PEPCK, and acetyl-GD3 in BD lymphoblast cells compared to normal cells, possibly resulting in the high ROS levels, mitochondrial membrane depolarization, and apoptosis typically found in BD. 相似文献
4.
The neuronal ceroid lipofuscinoses (NCLs, also known collectively as Batten disease) are a group of lysosomal storage disorders characterized by the accumulation of autofluorescent storage material in the brain and other tissues. A number of genes underlying various forms of NCL have been cloned, but the basis for the neurodegeneration in any of these is unknown. High levels of dolichol pyrophosphoryl oligosaccharides have previously been demonstrated in brain tissue from several NCL patients, but the specificity of the effect for the NCLs has been unclear. In the present study, we examine eight mouse models of lysosomal storage disorders by modern FACE and found striking lipid-linked oligosaccharide (LLO) accumulation in NCL mouse models (especially CLN1, CLN6, and CLN8 knockout or mutant mice) but not in several other lysosomal storage disorders affecting the brain. Using a mouse model of the most severe form of NCL (the PPT1 knockout mouse), we show that accumulated LLOs are not the result of a defect in LLO synthesis, extension, or transfer but rather are catabolic intermediates derived from LLO degradation. LLOs are enriched about 60-fold in the autofluorescent storage material purified from PPT1 knockoutmouse brain but comprise only 0.3% of the autofluorescent storage material by mass. The accumulation of LLOs is postulated to result from inhibition of late stages of lysosomal degradation of autophagosomes, which may be enriched in these metabolic precursors. 相似文献
5.
R. D. Jolly 《Neurochemical research》1995,20(11):1301-1304
Ceroid-lipofuscinosis is an inherited neurodegenerative disease of human beings and domestic animals characterized by the accumulation in neurons and other cells of a fluorescent lipopigment. In the ovine form of disease, subunit c of mitochondrial ATP synthase is the dominant accumulated metabolite (>50%). It also accumulates significantly in the late infantile and juvenile forms of the human disease and several other animal forms. Evidence is accumulating that the underlying biochemical defect may be associated with mitochondria. The extreme hydrophobicity of subunit c and its propensity to aggregate with lipids into regular multilamellar arrays that cannot be catabolised may reflect an initial defect not necessarily associated with faulty proteolysis. This hypothesis extends an earlier one that subunit c accumulated due to a defect in its catabolic pathway.Special issues dedicated to Dr. Leon S. Wolfe. 相似文献
6.
N‐acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease
Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N‐acetylcysteine (NAC), a well‐known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Effects of resveratrol and 4-hexylresorcinol on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes 总被引:1,自引:0,他引:1
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST). 相似文献
8.
Aim
Resveratrol (RES) is a well-known antioxidant, yet in combination with other antioxidant vitamins, it was found to be more effective than any of these antioxidants alone. Present work aims to compare the antioxidant actions of resveratrol with and without vitamin C following delivery as liposomes tested using chemical and cellular antioxidative test systems.Main methods
Liposomes were prepared by the thin film hydration method and characterised for percent drug entrapment (PDE), Z-average mean size (nm), polydispersity index (PDI) and zeta potential. Antioxidative capacity was determined by studying the inhibition of AAPH induced luminol enhanced chemiluminescence and inhibition of ROS production in isolated blood leukocytes. Intracellular oxygen-derived radicals were measured using flow cytometry with buffy coats (BC) and human umbilical vein endothelial cells using H2DCF-DA dye.Key findings
Particle size varied from 134.2 ± 0.265 nm to 103.3 ± 1.687 nm; PDI ≤ 0.3; zeta potential values were greater than − 30 mV and PDE ≥ 80%. Radical scavenging effect was enhanced with liposomal systems; oxidative burst reaction in BC was inhibited by liposomal formulations, with the effect slightly enhanced in presence of vitamin C. Reduction in reactive oxygen species (ROS) production during spontaneous oxidative burst of BC and incubation of HUVECs with H2O2 further intensified the antioxidative effects of pure RES and liposomal formulations.Significance
The present work clearly shows that the antioxidative effects of resveratrol loaded into liposomes are more pronounced when compared to pure resveratrol. Liposomal resveratrol is even active within the intracellular compartments as RES could effectively quench the intracellular accumulation of ROS. 相似文献9.
Juvenile neuronal ceroid lipofuscinoses (Batten disease) is a progressive neurodegenerative disorder resulting from mutations in the CLN3 gene, which encodes a hydrophobic 438 amino acid protein of unknown function. Prior studies have shown that CLN3 is expressed in multiple tissues, with highest levels in brain and testis. Experiments using cells overexpressing CLN3 indicate that CLN3 is a lysosomal resident protein. However, studies to date have not addressed trafficking of endogenous CLN3. As such, the purpose of the present study was two-fold. First, to develop a culture model to allow evaluation of native CLN3 transport. Second, to utilize available epitope-specific antibodies to determine if CLN3 reaches the plasma membrane en route to the lysosome. Our data using a NCCIT (embryonic testicular carcinoma) cell model coupled with surface biotinylation and antibody trapping demonstrated that at least a proportion of CLN3 trafficks to the lysosome via the cell membrane. Moreover, inhibition of the micro3A subunit of the AP-3 adapter protein complex increased levels of CLN3 at the cell surface. 相似文献
10.
Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival. 相似文献
11.
Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity. 相似文献
12.
Summary In previous studies, oxidants such as hydrogen peroxide (H2O2) or hydroperoxy fatty acids were shown to induce apoptosis in the CEM human T cell line as demonstrated by the cleavage of cellular DNA into a 180-base pair ladder. Oxidant-induced DNA fragmentation was detectable within 3 h and inhibitable by various antioxidants. In the present study, apoptosis is shown to also be induced by the addition of low doses (0.1–3 mM) of N-acetyl-L-cysteine (NAC), reduced glutathione (GSH) or cysteine. By contrast, higher concentrations (10 mM) of the same thiols displayed a paradoxical lack of toxicity. Thiol-induced apoptosis was completely prevented by the addition of BAPTA-AM, an intracellular calcium chelator, or by simultaneous treatment with 5 mM pyruvate which forms a thiazolidine complex with sulfhydryl compounds. Catalase or glutathione peroxidase, but not Superoxide dismutase, protected the cells from thiol-induced apoptosis demonstrating a role for H2O2. The ability of thiol compounds to either evoke or prevent oxidative stress implies a unique role for these agents in the control of apoptosis in lymphoid cells. 相似文献
13.
Xie Ning Geng Na Zhou Dong Xu Yuliang Liu Kangping Liu Yongxia Liu Jianzhu 《Molecular biology reports》2019,46(1):301-308
Molecular Biology Reports - Anthocyanin is a natural plant pigment that acts as an antioxidant and scavenges free radicals. This study aimed to investigate the potential protective role of... 相似文献
14.
Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD 总被引:1,自引:0,他引:1
Robb EL Page MM Wiens BE Stuart JA 《Biochemical and biophysical research communications》2008,367(2):406-412
trans-Resveratrol (3,4′,5-trihydroxystilbene; RES), a polyphenol found in particularly high concentrations in red wine, has recently attracted intense interest for its potentially beneficial effects on human health. Here, we report the effects of long-term exposure to micromolar concentrations of RES on antioxidant and DNA repair enzyme activities in a human cell line (MRC-5). RES had either no effect on, or reduced the activities of glutathione peroxidase, catalase and CuZn superoxide dismutase (SOD), in treatments lasting up to 2 weeks. RES failed to induce activities of the DNA base excision repair enzymes apurinic/apyrimidinic endonuclease and DNA polymerase β. However, it dramatically and progressively induced mitochondrial MnSOD expression and activity. Two weeks exposure to RES increased MnSOD protein level 6-fold and activity 14-fold. Thus, long-term exposure of human cells to RES results in a highly specific upregulation of MnSOD, and this may be an important mechanism by which it elicits its effects in human cells. 相似文献
15.
bcl-2和bax及NF-kB在白藜芦醇诱导肝癌细胞凋亡中的作用 总被引:3,自引:0,他引:3
目的探讨白藜芦醇诱导肝癌细胞凋亡的途径。方法白藜芦醇体外处理HepG2肝癌细胞24h后,以免疫组化检测凋亡调控基因bc1-2和bax及NF-kB的表达。结果白藜芦醇处理组HepG2细胞bc1-2的阳性积分和NF-kB的阳性细胞密度均明显低于对照组(P<0.01);而bax阳性积分明显高于对照组(P<0.01)。结论白藜芦醇能下调HepG2细胞bc1-2基因的表达,上调bax的表达,同时抑制NF-kB的活化,这可能是其诱导HepG2细胞凋亡的途径之一。 相似文献
16.
Protective effects of a new metalloporphyrin on paraquat-induced oxidative stress and apoptosis in N27 cells 总被引:1,自引:0,他引:1
Chen P Li A Zhang M He M Chen Z Wu X Zhao C Wang S Liang L 《Acta biochimica et biophysica Sinica》2008,40(2):125-132
Paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridinium),awidely-used herbicide, has been suggested as a potential etiologic factor for the development of Parkinson's disease. In recent years, many studies have focused on the mechanism(s) of PQ neurotoxicity. In this study, we examined the neuroprotective effect of manganese (Ⅲ) meso-tetrakis (N,N′-diethylimi- dazolium) porphyrin (MnTDM), a superoxide dismutase/ catalase mimetic, on PQ-induced oxidative stress and apoptosis in 1 RB3AN27 (N27) cells, a dopaminergic neuronal cell line. The results indicated that MnTDM significantly attenuated PQ-induced loss of cell viability, glutathione depletion, and reactive oxygen species production. MnTDM also ameliorated PQ-induced morphological nuclear changes of apoptosis and increased rates of apoptosis. In addition, our data provide direct evidence that MnTDM suppressed PQ- induced caspase-3 cleavage, possibly a key event of PQ neurotoxicity. These observations suggested that oxidative stress and apoptosis are implicated in PQ-induced neurotoxicity and this toxicity could be prevented by MnTDM. These findings also proposed a novel therapeutic approach for Parkinson's disease and other disorders associated with oxidative stress. 相似文献
17.
Ji Hoon Song Ki Sung Kang You-Kyung Choi 《Bioorganic & medicinal chemistry letters》2017,27(23):5109-5113
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases. 相似文献
18.
Oxidative stress plays an important part in the appearance and development of cardiovascular diseases. In this context, overproduction of reactive oxygen species leads to deregulation of metabolic pathways, such as cell proliferation or inflammation, which interferes with the homeostasis of vascular endothelium. Oxidative stress can decrease the bioavailability of nitric oxide (*NO) in vessels. This decrease is highly associated with endothelial dysfunction. The "French paradox" is a phenomenon that associates a diet rich in saturated fatty acids and a moderate consumption of wine to a low prevalence of cardiovascular diseases. During the past 10 years, the beneficial effects of wine on cardiovascular diseases have been attributed to the actions of resveratrol and other polyphenols. One of the mechanisms involved in these beneficial effects is the capacity of resveratrol and some other stilbene derivatives to maintain sufficient *NO bioavailability in vascular endothelium. This review presents the latest findings on the molecular effects of resveratrol and other stilbene derivatives on the various actors that modulate *NO bioavailability during oxidative stress. 相似文献
19.
20.
Sabateeshan Mathavarajah Meagan D. McLaren Robert J. Huber 《生物化学与生物物理学报:疾病的分子基础》2018,1864(11):3559-3573
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration. 相似文献