首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to modify and develop procedures for tissue culture-inactivated Japanese B encephalitis (JBE) virus vaccine production in large quantities. Various types of glass bottles were tried and, considering many advantages, long cylindrical roller (CR) bottles were selected. Several variables were investigated including number and volume of trypsinized cells to be seeded, volume of growth medium required for optimum cell growth, amount of calf serum, and volume of harvest medium for a high-titer virus yield. A good confluent cell sheet in CR bottles was obtained within a week by increasing the calf serum from 4 to 10% and when such tissue in a CR bottle was inoculated with 45,000 viral mean tissue culture infective doses directly into the medium, the cytopathological effects (CPE) appeared on day 5. High-titer virus yields were obtained when the harvests were made at 4(+) CPE using medium 199 with 2% human albumin at pH 8.3 to 8.5. No appreciable gain in titer was found from such harvests by blending to release intracellular virions. The production methods finally adopted gave consistently good results, and several inactivated JBE virus vaccine lots with minimum immunizing doses, ranging from 0.005 to 0.017 ml, were prepared using a large number of CR bottles in a simulated commercial-scale production system.  相似文献   

2.
Tissue-cultured Aedes albopictus cells infected with morphologically homogeneous Sindbis virus were found to produce progeny virions which could be divided into three classes based on size. The thickness of the envelope was constant on all three sizes of progeny virions suggesting that the variability in size rested with the viral nucleocapsid. It is suggested that the three classes of virions have icosahedral nucleocapsids composed of common subunits organized in decreasing triangulation numbers.  相似文献   

3.
4.
Microexudates from Cells Grown in Tissue Culture   总被引:10,自引:0,他引:10       下载免费PDF全文
Cellular substrata of known molecular structure and measurable dimensions can be constructed as transferred films from Langmuir troughs or as adsorbed films. In addition, large molecules in culture media form measurable adsorbates. With the techniques of ellipsometry and surface chemistry it is possible to characterize and measure (within ± 3A) as a function of several parameters a microexudate of molecular dimensions deposited when tissue cultured cells contact certain substrata. The selective attraction of substratum and cell for microexudate has been determined, and the time course of deposition in Eagle's medium is characterized by a rapid initial accretion of material. During this period, microexudate can diffuse several cell diameters and cannot be detected in the culture medium. In Eagle's medium the cells cannot be detached from glass surfaces by versene or trypsin unless the surface of cell or substratum is coated with certain molecules. Trypsin becomes adsorbed to cell surfaces, continues to be enzymatically active on the surface, and digests protein components of microexudate and substratum. Microexudate appears to be a complex mosaic of molecules (including protein) synthesized within or on the surfaces of cells and secreted by cells or transferred from their surfaces to specific substrata. It is proposed that this mosaic plays, on the molecular level, a significant role in cell-to-cell interactions, cell locomotion and adhesion, and the selective application and spreading of cells on various surfaces.  相似文献   

5.
6.
连续灌流培养杂交瘤细胞生产单克隆抗体   总被引:3,自引:1,他引:2  
自 2 0世纪 70年代以来 ,工程抗体在基础医学研究、临床诊断和治疗 ,以及免疫预防等领域中的广泛应用 ,大大促进了其产业化的进程。目前工业化生产单克隆抗体的主要方法是通过发酵罐、中空纤维和固定床等生物反应器培养系统 ,以微载体、微包囊法在体外大规模高密度培养杂交瘤细胞 ,再通过相关的纯化手段浓缩纯化制备抗体[1 ,2 ] 。就操作方式而言 ,一般采用两个基本策略 :①大容量高密度的悬浮培养 ,最多采用的是搅拌式气升式生物反应器 ,通过微载体依托细胞相对固定化 ,降低了搅拌培养时对细胞的剪切力 ,提高细胞的密度和稳定性及生产率。…  相似文献   

7.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

8.
9.
Polypeptides of egg-borne Sendai virus (egg Sendai), which is biologically active on the basis of criteria of the infectivity for L cells and of hemolytic and cell fusion activities, were compared by polyacrylamide gel electrophoresis with those of L cell-borne (L Sendai) and HeLa cell-borne Sendai (HeLa Sendai) viruses, which are judged biologically inactive by the above criteria. Densitometer profiles on the stained gels of egg Sendai resolved six polypeptides (virion protein [VP] 1 to VP6), in which VP2 and VP4 were identified as glycoproteins by PAS stain. Comparative electropherograms of both L Sendai and HeLa Sendai revealed that there were significantly larger amounts in the VP2 region of these viruses but VP4 was present only in greatly reduced amounts as compared to egg Sendai. It was also found that VP2 of L Sendai and HeLa Sendai consisted of two components, VP2a and VP2b, but the one of egg Sendai consisted of only VP2a. A mild trypsin treatment which converts both L Sendai and HeLa Sendai to a biologically active form selectively removed VP2b from these viruses and increased concomitantly the amounts of materials in the VP4 region. The same treatment of egg Sendai affected neither its biological activities nor its electropherogram. Consequently, gross polypeptide profiles on the stained gels of L Sendai and HeLa Sendai after trypsin treatment became favorably comparable to that of egg Sendai. Electrophoresis of labeled L Sendai and HeLa Sendai with a (3)H-amino acids mixture and (14)C-glucosamine resolved at least three glycoproteins, GP1, GP2, and GP3, each corresponding to VP2a, VP2b, and VP4, respectively. The trypsin treatment of these viruses removed almost all the radioactivity of GP2 and simultaneously increased the radioactive counts of GP3 and raised small amounts of rapidly moving heterogeneous glycoprotein, GP4. A possible relationship between the biological modification and the above characteristic polypeptide patterns of Sendai virus was discussed.  相似文献   

10.
11.
Cell-free infectious viruses were successfully recovered by the aid of freezing and thawing from cultures infected with the Kitaken-1 and Biken strains of subacute sclerosing panencephalitis (SSPE) virus. Our results including those in a previous report which dealt with the Niigata-1 strain of SSPE virus show that cell-free viruses can be detected from all of the SSPE virus-carrying cultures established in Japan. It was also found that cell-free infectious viruses can be recovered efficiently by dispersing the virus-carrying cultures with EDTA. The inclusion of trypsin in the EDTA solution, however, caused a poor recovery of the infectious viruses. Infection of cells with the cell-free viruses readily established the virus-carrying cultures that have characteristics comparable to those of their original cultures. The culture infected with the Kitaken-1 strain produced infectious viruses in about ten times the amount of the other two infected cultures. The buoyant densities of the cell-free infectious viruses were almost the same among the three strains, the values being 1.120 to 1.132, but significantly less than that of 1.164 of measles virus. The low density can be ascribed to one of the characteristics of these SSPE viruses.  相似文献   

12.
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.Hepatitis C virus (HCV) infections are characterized by a mostly unapparent acute phase leading to persistence in ca. 70% of all infected individuals. Currently, 170 million people suffer from chronic hepatitis C, and they have a high risk to develop severe liver disease. It has been estimated that HCV accounts for 27% of cirrhosis and 25% of hepatocellular carcinoma cases worldwide (2).HCV is an enveloped positive-strand RNA virus belonging to the genus Hepacivirus in the family Flaviviridae. The genome of HCV encompasses a single ∼9,600-nucleotide (nt)-long RNA molecule containing one large open reading frame (ORF) that is flanked by nontranslated regions (NTRs), which are important for viral translation and replication. HCV proteins generated from the polyprotein precursor are cleaved by cellular and viral proteases into at least 10 different products (for a review of polyprotein cleavage and the function of the individual proteins, see reference 4). The structural proteins Core, E1, and E2 are located in the amino-terminal portion of the polyprotein, followed by p7, a hydrophobic peptide that is supposed to be a viroporin, and the nonstructural proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Only the nonstructural proteins NS3 to NS5B are involved in viral RNA replication. NS3 is a multifunctional protein, consisting of an amino-terminal protease domain required for the processing of the NS3 to NS5B region and a carboxyterminal helicase/nucleoside triphosphatase domain. NS4A is a cofactor that activates the NS3 protease function by forming a heterodimer. The hydrophobic protein NS4B induces vesicular membrane alterations involved in RNA replication. NS5A is a phosphoprotein that seems to play an important role in viral replication and assembly (3, 35, 58). NS5B is the RNA-dependent RNA polymerase of HCV.Positive-strand RNA viruses replicate their RNA in vesicular structures originating from different cellular organelles (36). In the case of HCV, particular membrane alterations have been identified by electron microscopy, designated the membranous web, consisting of accumulations of vesicles primarily derived from the endoplasmic reticulum (17). Important insights into the organization of HCV replication complexes were obtained by the in vitro analysis of viral RNA synthesis in membrane preparations of cells harboring subgenomic HCV replicons, so-called crude replication complexes (CRCs) (1, 20). A current model based on a stoichiometric analysis of CRCs suggests that each vesicular structure contains multiple copies of viral nonstructural proteins and has a connection to the cytoplasm, allowing the constant supply of nucleotides for RNA synthesis (45), presumably analogously to the replication complex of the closely related dengue virus (DV) (64). Viral RNA synthesis in CRCs is highly resistant to proteinases and nucleases (39), and the membranes are detergent resistant at 4°C, resembling features of lipid rafts (54).Several purification techniques have been established to identify relevant HCV host factors by proteomics, based on either the extraction of detergent-resistant membranes (19, 34) or the immunoprecipitation of vesicles (24), revealing different sets of cellular proteins potentially involved in viral replication. In most of these studies, cell lines harboring persistent subgenomic replicons were utilized (33); however, with the availability of a fully permissive cell culture system supporting the complete HCV replication cycle (31, 63, 66), it became evident that viral RNA replication and assembly are closely linked. Recent work revealed an intimate connection of viral replication complexes and assembly sites in close proximity to cytoplasmic lipid droplets (38), with Core and especially NS5A functioning as central regulators by a poorly defined mechanism. NS5A is phosphorylated at multiple serine and threonine residues, binds RNA, and is composed of three domains, which are separated by trypsin-sensitive low-complexity regions (LCS I and II) (59). An N-terminal amphipathic alpha helix tightly associates NS5A with intracellular membranes. Domain I and LCS1 most likely are involved in viral RNA replication, since replication-enhancing mutations primarily mapped to this region (8, 32). The role of domain II is unknown, while domain III recently has been shown to be dispensable for RNA replication but essential for viral particle assembly (3, 35, 58). One of the proposed mechanisms points to a critical interaction with the Core protein, for which phosphorylation in the C-terminal part of domain III of NS5A appears to be required (35). The interaction of Core and NS5A has been proposed to be important for the recruitment of the replication complexes to lipid droplets (3), thereby allowing a coordinated packaging of the newly synthesized RNA.In this study, we identified annexin A2 (also called annexin II, calpactin 1, and ANXA2) as an HCV host factor by a proteomic analysis. ANXA2 belongs to a family of proteins characterized by their Ca2+-dependent binding to negatively charged phospholipids. The annexin proteins consist of two principle domains, a variable N-terminal and a conserved C-terminal domain, which harbors the Ca2+ and membrane binding sites (for a review, see references 14 and 15). All annexins show cytosolic and membrane localizations. Membrane recruitment probably is regulated by intracellular Ca2+ fluctuations, and target membrane selection differs for different annexins.In addition to showing a cytosolic distribution, ANXA2 can associate with the plasma membrane and the membrane of early endosomes. Plasma membrane-associated ANXA2 typically is found in a tight heterotetrameric complex with the S100 protein S100A10 (p11). ANXA2 specifically interacts with phosphatidylinositol(4,5)bisphosphate (PIP2) (22, 48) and binds to membranes enriched in cholesterol, supporting a role in the organization of lipid raft-like membrane microdomains. Due to the direct binding of ANXA2 to F-actin, the protein has been proposed to provide a direct link between cytoskeletal elements and PIP2/cholesterol-rich membrane domains (47).ANXA2 has been implicated in several cellular transport processes, including the internalization and transport of cholesteryl esters, the biogenesis of multivesicular bodies, the recycling of plasma membrane receptors, and the Ca2+-induced exocytosis of certain secretory granules (14). Here, we show that ANXA2 is present at HCV replication sites within the membranous web. The recruitment of ANXA2 is mediated by domain III of NS5A and probably is required for efficient virus assembly.  相似文献   

13.
Growth of Pathogenic Virus in a Large-Scale Tissue Culture System   总被引:6,自引:5,他引:1       下载免费PDF全文
A model system is described for the mass propagation of Rift Valley fever (RVF) virus, utilizing large-volume fermentor units for suspension culture of tissue cells and the subsequent production of virus. Comparisons between laboratory- and fermentor-scale operations of tissue cell growth gave equivalent results. Cell viability dropped 24 to 30 hr postinfection with a subsequent virus yield between 10(8.0) and 10(9.0) mouse intracerebral median lethal doses per milliliter. Infecting volumes of tissue cell culture (20- or 40-liter working volumes) had no apparent effect on virus yields. Tissue cells grown under either oxidation-reduction potential- and pH-controlled or uncontrolled conditions showed little or no difference in their ability to produce RVF virus. We believe this tissue cell virus process to have potential application for large-scale production of vaccines for human or veterinary use or for the mass propagation of certain carcinogenic viruses for cancer research, once use of established lines for this purpose is accepted.  相似文献   

14.
The RanGTPase system has multiple functions in both interphase and mitosis. Extensive studies of Ran-driven nucleocytoplasmic transport have contributed significantly toward our understanding of how RanGTP is produced, hydrolyzed, and localized in interphase. However, there is still a lack of understanding about how this system operates in mitosis. Recent advances have begun to shed light on how RanGTP is produced and localized in mitotic mammalian cells.  相似文献   

15.
Production of Streptokinase in Continuous Culture   总被引:1,自引:0,他引:1       下载免费PDF全文
A method for continuous cultivation of a β-hemolytic streptococcus, strain H 64, is described. The production of cells and streptokinase at various dilution rates, pH, and temperature were studied in a complex medium supplied with excess glucose. At pH 7.0, productivity of cells and streptokinase, as well as the yield constant with respect to glucose, all increased with increasing dilution rate in the range of 0.1 to 0.5 hr-1. The production of streptokinase was found to be a function of both growth rate and cell concentration. Although higher concentrations of streptokinase were obtained in experiments with batch cultures, the production of streptokinase in continuous cultures was found to be 2.3 times higher. The possible industrial application of a continuous production method is considered.  相似文献   

16.
A 2-liter continuous culture for the production of Escherichia coli rich in alkaline phosphatase is described. The maximal output is greater than 250 mg of enzyme per day. The enzyme yield per unit of bacterial dry weight is only one-fifth of that obtained in earlier investigations. However, because of the increased bacterial density, the output per unit volume of culture is more than four times as great.  相似文献   

17.
Purification of Rabies Virus Grown in Tissue Culture   总被引:32,自引:20,他引:12       下载免费PDF全文
Extracellular rabies virus, grown in monolayer cultures of BHK21 cells in the presence of medium supplemented with bovine serum albumin, was purified by the following procedure. Virus was precipitated from infectious tissue culture fluid by zinc acetate and was resuspended in a solution of ethylenediaminetetraacetate. The suspension was filtered through a Sephadex column and was treated with ribonuclease and deoxyribonuclease. The virions were then pelleted by centrifugation at high speed and were resuspended in buffer solution. Banding of the virus by centrifugation in a sucrose density gradient was the final step in the purification procedure. Purified preparations contained bullet-shaped virus particles of variable length and little (up to 5%) contaminating host-cell material. Most of the virions were "complete", i.e., 180 nm long, but some virus particles were shorter. The length distribution of the virions was nonrandom. Shorter virions seemed to be noninfectious and showed markedly decreased hemagglutinating activity. The complement-fixing activity and the ribonucleic acid to protein ratio of the virions were not related to the length of the virus particles. Although the properties of extracellular and intracellular viruses were similar, the procedure was not suitable for purification of intracellular rabies virus.  相似文献   

18.
With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号