首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl carrier protein (ACP) is a required cofactor for fatty acid synthesis in Escherichia coli. Mutants lacking beta-ketoacyl-ACP synthase II activity (fabF1 or fabF3) possessed a different molecular species of ACP (F-ACP) that was separated from the normal form of the protein by conformationally sensitive gel electrophoresis. Synthase I mutants contained the normal protein. Complementation of fabF1 mutants with an F' factor harboring the wild-type synthase II allele resulted in the appearance of normal ACP, whereas complementation with an F' possessing the fabF2 allele (a mutation that produces a synthase II enzyme with altered catalytic activity) resulted in the production of both forms of ACP. The structural difference between F-ACP and ACP persisted after the removal of the 4'-phosphopantetheine prosthetic group, and both forms of the protein had identical properties in an in vitro fatty acid synthase assay. Both ACP and F-ACP were purified to homogeneity, and their primary amino acid sequences were determined. The two ACP species were identical but differed from the sequence reported for E. coli E-15 ACP in that an Asn instead of an Asp was at position 24 and an Ile instead of a Val was at position 43. Therefore, F-ACP appears to be a modification of ACP that is detected when beta-ketoacyl-ACP synthase II activity is impaired.  相似文献   

2.
Holo-(acyl carrier protein) synthase (AcpS) post-translationally modifies apoacyl carrier protein (apoACP) via transfer of 4'-phosphopantetheine from coenzyme A (CoA) to the conserved serine 36 gamma-OH of apoACP. The resulting holo-acyl carrier protein (holo-ACP) is then active as the central coenzyme of fatty acid biosynthesis. The acpS gene has previously been identified and shown to be essential for Escherichia coli growth. Earlier mutagenic studies isolated the E. coli MP4 strain, whose elevated growth requirement for CoA was ascribed to a deficiency in holoACP synthesis. Sequencing of the acpS gene from the E. coli MP4 strain (denoted acpS1) showed that the AcpS1 protein contains a G4D mutation. AcpS1 exhibited a approximately 5-fold reduction in its catalytic efficiency when compared with wild type AcpS, accounting for the E. coli MP4 strain phenotype. It is shown that a conditional acpS mutant accumulates apoACP in vivo under nonpermissive conditions in a manner similar to the E. coli MP4 strain. In addition, it is demonstrated that the gene product, YhhU, of a previously identified E. coli open reading frame can completely suppress the acpS conditional, lethal phenotype upon overexpression of the protein, suggesting that YhhU may be involved in an alternative pathway for phosphopantetheinyl transfer and holoACP synthesis in E. coli.  相似文献   

3.
BACKGROUND: Holo-(acyl carrier protein) synthase (AcpS), a member of the phosphopantetheinyl transferase superfamily, plays a crucial role in the functional activation of acyl carrier protein (ACP) in the fatty acid biosynthesis pathway. AcpS catalyzes the attachment of the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to the sidechain of a conserved serine residue on apo-ACP. RESULTS: We describe here the first crystal structure of a type II ACP from Bacillus subtilis in complex with its activator AcpS at 2.3 A. We also have determined the structures of AcpS alone (at 1.8 A) and AcpS in complex with CoA (at 1.5 A). These structures reveal that AcpS exists as a trimer. A catalytic center is located at each of the solvent-exposed interfaces between AcpS molecules. Site-directed mutagenesis studies confirm the importance of trimer formation in AcpS activity. CONCLUSIONS: The active site in AcpS is only formed when two AcpS molecules dimerize. The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer. The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.  相似文献   

4.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   

5.
The molecular details that govern the specific interactions between acyl carrier protein (ACP) and the enzymes of fatty acid biosynthesis are unknown. We investigated the mechanism of ACP-protein interactions using a computational analysis to dock the NMR structure of ACP with the crystal structure of beta-ketoacyl-ACP synthase III (FabH) and experimentally tested the model by the biochemical analysis of FabH mutants. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The ACP interaction surface was defined by mutations that compromised FabH activity in the ACP-dependent assay but had no effect in the ACP-independent assay. ACP docked to a positively charged/hydrophobic patch adjacent to the active site tunnel on FabH, which included a conserved arginine (Arg-249) that was required for ACP docking. Kinetic analysis and direct binding studies between FabH and ACP confirmed the identification of Arg-249 as critical for FabH-ACP interaction. Our experiments reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of the fatty acid biosynthesis enzymes and the high degree of sequence conservation in helix II of ACP across species.  相似文献   

6.
7.
8.
The long-chain alpha-alkyl-beta-hydroxy fatty acids, termed mycolic acids, which are characteristic components of the mycobacterial cell wall are produced by successive rounds of elongation catalyzed by a multifunctional (type I) fatty acid synthase complex followed by a dissociated (type II) fatty acid synthase. In bacterial type II systems, the first initiation step in elongation is the condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) catalyzed by beta-ketoacyl-ACP III (FabH). An open reading frame in the Mycobacterium tuberculosis genome (Rv0533c), now termed mtfabH, was 37.3% identical to Escherichia coli ecFabH and contained the Cys-His-Asn catalytic triad signature. However, the purified recombinant mtFabH clearly preferred long-chain acyl-CoA substrates rather than acyl-ACP primers and did not utilize acetyl-CoA as a primer in comparison to ecFabH. In addition, purified mtFabH was sensitive to thiolactomycin and resistant to cerulenin in an in vitro assay. However, mtFabH overexpression in Mycobacterium bovis BCG did not confer thiolactomycin resistance, suggesting that mtFabH may not be the primary target of thiolactomycin inhibition in vivo and led to several changes in the lipid composition of the bacilli. The data presented is consistent with a role for mtFabH as the pivotal link between the type I and type II fatty acid elongation systems in M. tuberculosis. This study opens up new avenues for the development of selective and novel anti-mycobacterial agents targeted against mtFabH.  相似文献   

9.
Finking R  Mofid MR  Marahiel MA 《Biochemistry》2004,43(28):8946-8956
4'-Phosphopantetheinyl transferases (PPTases) are essential for the production of fatty acids by fatty acid synthases (primary metabolism) and natural products by nonribosomal peptide synthetases and polyketide synthases (secondary metabolism). These systems contain carrier proteins (CPs) for the covalent binding of reaction intermediates during synthesis. PPTases transfer the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto conserved serine residues of the apo-CPs to convert them to their functionally active holo form. In bacteria, two types of PPTases exist that are evolutionary related but differ in their substrate spectrum. Acyl carrier protein synthases (AcpSs) recognize CPs from primary metabolism, whereas Sfp- (surfactin production-) type PPTases have a preference for CPs of secondary metabolism. Previous investigations showed that a peptidyl carrier protein (PCP) of secondary metabolism can be altered to serve as substrate for AcpS. We demonstrate here that a single mutation in PCP suffices for the modification of this CP by AcpS, and we have identified by mutational analysis several other PCP residues and two AcpS residues involved in substrate discrimination by this PPTase. These altered PCPs were still capable of serving their designated function in NRPS modules, and selective use of AcpS or Sfp leads to production of two different products by a trimodular NRPS.  相似文献   

10.
11.
12.
The synthases that produce fatty acids in mammals (FASs) are arranged as large multidomain polypeptides. The growing fatty acid chain is bound covalently during chain elongation and reduction to the acyl carrier protein (ACP) domain that is then able to access each catalytic site. In this work we report the high-resolution nuclear magnetic resonance (NMR) solution structure of the isolated rat fatty acid synthase apoACP domain. The final ensemble of NMR structures and backbone (15)N relaxation studies show that apoACP adopts a single, well defined fold. On conversion to the holo form, several small chemical shift changes are observed on the ACP for residues surrounding the phosphopantetheine attachment site (as monitored by backbone (1)H-(15)N correlation experiments). However, there are negligible chemical shift changes when the holo form is modified to either the hexanoyl or palmitoyl forms. For further NMR analysis, a (13)C,(15)N-labeled hexanoyl-ACP sample was prepared and full chemical shift assignments completed. Analysis of two-dimensional F(2)-filtered and three-dimensional (13)C-edited nuclear Overhauser effect spectroscopy experiments revealed no detectable NOEs to the acyl chain. These experiments demonstrate that unlike other FAS ACPs studied, this Type I ACP does not sequester a covalently linked acyl moiety, although transient interactions cannot be ruled out. This is an important mechanistic difference between the ACPs from Type I and Type II FASs and may be significant for the modulation and regulation of these important mega-synthases.  相似文献   

13.
D-optimal design and Projection to Latent Structures (PLS) analysis were used to optimize screening hit 5 (B. subtilis AcpS IC(50): 15 microM, B. subtilis MIC: >200 microM) into a series of 4H-oxazol-5-one, small molecule, antibacterial, AcpS inhibitors. Specifically, 15, 16 and 18 show microM or sub-microM AcpS inhibition (IC(50)s: 15: 1.1 microM, 16: 1.5 microM, 18: 0.27 microM) and moderate antibacterial activity (MICs: 12.5-50 microM) against B. subtilis, E. faecalis ATCC, E. faecalis VRE and S. pneumo+.  相似文献   

14.
Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes collectively known as type II fatty-acid synthase. Each enzyme interacts with acyl carrier protein (ACP), which shuttles the pathway intermediates between the proteins. The type II enzymes do not possess primary sequence similarity that defines a common ACP-binding site, but rather are hypothesized to possess an electropositive/hydrophobic surface feature that interacts with the electronegative/hydrophobic residues along helix alpha2 of ACP (Zhang, Y.-M., Marrakchi, H., White, S. W., and Rock, C. O. (2003) J. Lipid Res. 44, 1-10). We tested this hypothesis by mutating two surface residues, Arg-129 and Arg-172, located in a hydrophobic patch adjacent to the active site entrance on beta-ketoacyl-ACP reductase (FabG). Enzymatic analysis showed that the mutant enzymes were compromised in their ability to utilize ACP thioester substrates but were fully active in assays with a substrate analog. Direct binding assays and competitive inhibition experiments showed that the FabG mutant proteins had reduced affinities for ACP. Chemical shift perturbation protein NMR experiments showed that FabG-ACP interactions occurred along the length of ACP helix alpha2 and extended into the adjacent loop-2 region to involve Ile-54. These data confirm a role for the highly conserved electronegative/hydrophobic residues along ACP helix alpha2 in recognizing a constellation of Arg residues embedded in a hydrophobic patch on the surface of its partner enzymes, and reveal a role for the loop-2 region in the conformational change associated with ACP binding. The specific FabG-ACP interactions involve the most conserved ACP residues, which accounts for the ability of ACPs and the type II proteins from different species to function interchangeably.  相似文献   

15.
16.
17.
18.
The crystal structure of the fatty acid elongating enzyme beta-ketoacyl [acyl carrier protein] synthase I (KAS I) from Escherichia coli has been determined to 2.3 A resolution by molecular replacement using the recently solved crystal structure of KAS II as a search model. The crystal contains two independent dimers in the asymmetric unit. KAS I assumes the thiolase alpha(beta)alpha(beta)alpha fold. Electrostatic potential distribution reveals an acyl carrier protein docking site and a presumed substrate binding pocket was detected extending the active site. Both subunits contribute to each substrate binding site in the dimer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号