首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgen insensitivity syndromes are X-linked disorders. Restriction fragment length polymorphism analysis of the androgen receptor gene showed that deletions were infrequent. Some mutations have been described. In these conditions, in high-risk family, carrier diagnosis is impossible unless identification of mutations is made. It is thus necessary to detect androgen receptor gene polymorphism in order to differentiate the two maternal X chromosomes. Two androgen receptor gene polymorphisms have been reported (Hind III and exon 1). In this study we analyzed these two gene polymorphisms to detect carriers in at-risk families. The combined results of the two analyses allowed us to detect carriers in 45% of the studied families. In two families the prenatal diagnosis of androgen insensitivity syndrome was performed.  相似文献   

2.
BACKGROUND/AIMS: Androgen insensitivity syndrome (AIS) caused by mutations within the androgen receptor gene represents a variety of phenotypes from females with 46,XY karyotype over individuals with ambiguous genitalia to infertile males. METHODS: We studied 24 patients with AIS by sequencing androgen receptor gene. 19 of the investigated patients were affected by complete androgen insensitivity syndrome (CAIS) and 5 suffered from partial androgen insensitivity syndrome (PAIS). RESULTS: So far we have detected 12 unreported mutations as well as 9 recurrent mutations (3 recurrent mutations were detected twice) in exons 2-8 of the androgen receptor gene. Three of the novel mutations cause a frameshift with subsequent premature termination and were found in patients with CAIS. These frameshifts were induced by single nucleotide deletion or insertion, or in one case by a 13-bp deletion, respectively. Another premature stop codon found in a CAIS patient results from an already reported nucleotide substitution in exon 5. Furthermore, in a CAIS patient we found a novel duplication of codon 788. All other mutations caused single base substitutions spread through exons 2-8 and were associated with CAIS or PAIS. CONCLUSIONS: We report a broad spectrum of different mutations within the AR gene leading to various manifestations of AIS. Apart from truncating mutations, a reliable genotype/phenotype correlation cannot be established. Therefore, modifying factors must be effective.  相似文献   

3.
Spinobulbar muscular atrophy (SBMA) is an X-linked form of motor neuron disease characterized by progressive atrophy of the muscles, dysphagia, dysarthria and mild androgen insensitivity. SBMA is caused by CAG repeat expansion in the androgen receptor gene. CAG repeat polymorphism was analysed in a Polish control group (n = 150) and patients suspected of SBMA (n = 60). Normal and abnormal ranges of CAG repeats were established in the control group and in 21 patients whose clinical diagnosis of SBMA was molecularly confirmed. The ranges are similar to those reported for other populations.  相似文献   

4.
5.
Polyglutamine tract expansion in androgen receptor is a recognized cause of spinal and bulbar muscular atrophy (SBMA), an X-linked motor neuronopathy. Similar mutations have been identified in proteins associated with other neurodegenerative diseases. Recent studies have shown that amplified polyglutamine repeat stretches form cellular aggregates that may be markers for these neurodegenerative diseases. Here we describe conditions that lead to aggregate formation by androgen receptor with polyglutamine stretch amplification. In transfection experiments, the mutant, compared with the wild-type receptor, was delayed in its cytoplasmic-nuclear translocation and formed large cytoplasmic aggregates in the presence of androgen. The cytoplasmic environment appears crucial for this aggregation, since retention of both the wild-type and mutant receptors in this cellular compartment by the deletion of their nuclear localization signals resulted in massive aggregation. Conversely, rapid nuclear transport of both receptors brought about by deletion of their ligand binding domains did not result in aggregate formation. However, androgen antagonists that altered the conformation of the ligand binding domain and promoted varying rates of cytoplasmic-nuclear translocation all inhibited aggregate formation. This demonstrates that in addition to the cytoplasmic localization, a distinct contribution of the ligand binding domain of the receptor is necessary for the aggregation. The finding that antiandrogens inhibit aggregate formation may provide the basis for in vivo determination of the role of these structures in SBMA.  相似文献   

6.
《Endocrine practice》2022,28(9):911-917
ObjectiveMild androgen insensitivity syndrome (MAIS) belongs to the androgen insensitivity syndrome (AIS) spectrum, an X-linked genetic disease that is the most common cause of differences in sex development. Unfortunately, AIS studies mainly focus on the partial and complete phenotypes, and the mild phenotype (MAIS) has been barely reported. Our purpose is to explore the MAIS facets, clinical features, and molecular aspects.MethodsWe collected all reported MAIS cases in the medical literature and presented them based on the phenotype and molecular diagnosis.ResultsWe identified 49 different androgen receptor (AR) mutations in 69 individuals in the literature. We compared the AR mutations presented in individuals with MAIS with AR mutations previously reported in other AIS phenotypes (partial and complete) regarding the type, location, genotype-phenotype correlation, and functional studies.ConclusionThis review provides a landscape of the mild phenotype of AIS. Most patients with MAIS present with male factor infertility. Therefore, AR gene sequencing should be considered during male factor infertility investigation, even in males with typically male external genitalia. In addition, MAIS can be part of other medical conditions, such as X-linked spinal and bulbar muscular atrophy (Kennedy disease).  相似文献   

7.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA.  相似文献   

8.
X-linked spinal and bulbar muscular atrophy (SBMA), an adult-onset form of motor neuron disease, was recently reported to be caused by amplification of the CAG repeats in the androgen receptor gene. We report here a simple and rapid strategy to detect the precise number of the CAGs. After the DNA fragment containing the CAG repeats is amplified by the polymerase chain reaction, a primer extension is carried out; the extension of the end-labelled reverse primer adjacent to 3' end of CAG repeats stops at the first T after CAG repeats with the incorporation of dideoxy ATP in the reaction mixture. The resultant primer products are analysed by denaturing polyacrylamide gel electrophoresis and autoradiography. This method could be quite useful to detect not only CAG repeats in SBMA but also other polymorphic dinucleotide and trinucleotide repeats.  相似文献   

9.
We studied a family with two cousins who were diagnosed with complete androgen insensitivity syndrome, an X-linked disorder caused by mutations in the androgen receptor gene. A pedigree analysis and a molecular study using PCR and DNA sequencing clarified each female family member's androgen receptor status and revealed a mutation consisting of the deletion of exon 2 and surrounding introns of the androgen receptor gene. Based on the relative nucleotide positions, we concluded that the deletion mutation in exon 2 and its surrounding introns was approximately 6000 to 7000 bp. This mutation, never previously fully characterized using DNA sequencing, was responsible for complete androgen insensitivity syndrome in this family. Pedigree analysis with a molecular study of the androgen receptor gene in affected families facilitates genetic counseling provided to family members.  相似文献   

10.
X连锁脊延髓肌萎缩症(SBMA)或肯尼迪病是一种成年人发病的神经变性疾病,以肌无力与慢性、进行性肌萎缩为特征. 通过PCR片段测序和基因分型法准确检测雄激素受体(AR)基因CAG复制数目,兄弟俩(来自同一个中国家庭)被确诊为隐性遗传性SBMA. 为了得到该中国家庭SMBA家系人员AR基因的CAG复制数目,我们采用了PCR片段测序和基因分型两种方法. 在该SMBA家系中有两个已发病的成年男性、未发病的年轻男性,及女性基因携带者. 两个已发病男性患者AR基因中CAG三核苷酸串重复数目分别是48和45. 以前的研究表明特定三核苷酸串重复数目的扩增可导致人类遗传性神经障碍疾病发病。我们的研究结果完全支持这一观点,SMBA中国家系的三核苷酸CAG拷贝数目检测结果表明,AR基因CAG扩增数目与SMBA发病相关. 关键词雄性激素受体; CAG多重三核苷酸重复; 肯尼迪病; 脊延髓肌萎缩症; X连锁  相似文献   

11.
12.
Study of androgen receptor functions by genetic models   总被引:2,自引:0,他引:2  
  相似文献   

13.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neurodegenerative disorder affecting only males and is caused by expanded polyglutamine (polyQ) stretches in the N-terminal A/B domain of human androgen receptor (hAR). Although no overt phenotype was detected in adult fly eye photoreceptor neurons expressing mutant hAR (polyQ 52), ingestion of androgen or its known antagonists caused marked neurodegeneration with nuclear localization and structural alteration of the hAR mutant. Ligand-independent toxicity was detected with a truncated polyQ-expanded A/B domain alone, which was attenuated with cytosolic trapping by coexpression of the unliganded hAR E/F ligand binding domain. Thus, our findings suggest that the full binding of androgen to the polyQ-expanded hAR mutants leads to structural alteration with nuclear translocation that eventually results in the onset of SBMA in male patients.  相似文献   

14.
15.
Sopher BL  Myrick SB  Hong JY  Smith AC  La Spada AR 《Gene》2000,261(2):383-390
Production of mouse models of inherited neurodegenerative diseases is an important step towards understanding the mechanism of neurotoxicity and for testing potential therapies. We are interested in creating a mouse model for X-linked spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by expansion of a CAG repeat within the androgen receptor (AR) gene. To permit generation of mice that will show a SBMA phenotype within their life span, we decided to obtain a yeast artificial chromosome (YAC) carrying the AR gene and introduce CAG repeat mutations numbering 100 or more triplets. SBMA patients with more than 70 CAGs have never been observed; therefore, we chose to expand a 59 CAG repeat tract in vivo in Escherichia coli. Although we set out to expand this repeat tract using a recombination paradigm involving two plasmid co-propagation, we did not observe large expansions. We were instead able to incrementally generate repeat tracts from 100 to 200 CAGs in a yeast integrating plasmid vector by taking advantage of replication instability. In the course of our experiments that yielded these CAG repeat tracts, we evaluated the role of repeat orientation, vector co-propagation, and recA function on the expansion process. We then used one of the yeast integrating vectors to successfully produce an AR YAC construct carrying 100 CAG repeats. AR YAC CAG100 will serve as a valuable reagent for the production of a SBMA mouse.  相似文献   

16.
17.
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.  相似文献   

18.
Cong P  Ye Y  Wang Y  Lu L  Yong J  Yu P  Joseph KK  Jin F  Qi M 《Gene》2012,500(2):220-223
Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.  相似文献   

19.
Although the linkage of polyglutamine (poly-Q) repeat expansion in the androgen receptor (AR) to Kennedy's disease (X-linked spinal and bulbar muscular atrophy) was a major step forward, the detailed molecular mechanism of how the change in poly-Q length contributes to the disease remains unclear. Here we report the identification of a nuclear G-protein, Ras-related nuclear protein/ARA24, as the first AR coactivator that can bind differentially with different lengths of poly-Q within AR. In the yeast and mammalian reciprocal interacting assays, our data suggested the interaction of AR N-terminal domain with ARA24 diminishes as the poly-Q length increases. The coactivation of ARA24 also diminishes with the poly-Q expansion within AR. Deletion of the acidic hexapeptide (DEDDDL) at the C terminus of ARA24 further enhances its AR coactivation. Together, our data suggest that poor interaction and weaker coactivation of ARA24 to the longer poly-Q AR in the X-linked spinal and bulbar muscular atrophied AR could contribute to the weaker transactivation of AR. The consequence of poor interaction and weak coactivation may eventually lead to the partial androgen insensitivity during the development of Kennedy's disease.  相似文献   

20.
Mutations of the androgen receptor gene cause a spectrum of androgen insensitivity phenotypes ranging from women with female external genitalia through patients with genital ambiguities to men with male genitalia but infertility. The CAG repeat in the first exon is important for transactivation of target genes of the androgen receptor and is thought to modulate androgen-dependent processes. Expansion of this repeat is the cause of X-linked spinobulbar muscular atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号