首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, the MAPKKK Ste11p is involved in three mitogen-activated protein kinase (MAPK) pathways required for mating, filamentous growth and the SHO1-dependent response to hyperosmolarity. All three pathways are also dependent on Ste50p. Ste50p and Ste11p interact constitutively via their N-terminal regions, which include putative SAM domains. Here we show that the interaction of Ste50p and Ste11p is differentially required for modulation of Ste11p function during mating, filamentous growth and the SHO1-dependent response to hyperosmolarity. Two derivatives of Ste50p with mutations in the SAM domain were isolated and characterised. The mutant Ste50 proteins showed reduced binding to Ste11p and a tendency to form homodimers in two-hybrid and in vitro binding assays. Interestingly, these two Ste50p-SAM mutants were associated with increased activation of the mating and filamentous-growth pathways, but a reduction in the SHO1-dependent growth response to hyperosmolarity, relative to the wild-type Ste50p. Moreover, when exposed to hyperosmolarity, these Ste50p-SAM mutants activate genes in the mating (FUS1) and filamentous-growth (FLO11) pathways to higher levels than does the wild type. Thus the Ste50p-Ste11p interaction may differentially modulate the flow of information through the various MAPK-mediated pathways.  相似文献   

2.
3.
In Saccharomyces cerevisiae, signal transduction through pathways governing mating, osmoregulation, and nitrogen starvation depends upon a direct interaction between the sterile alpha motif (SAM) domains of the Ste11 mitogen-activated protein kinase kinase kinase (MAPKKK) and its regulator Ste50. Previously, we solved the NMR structure of the SAM domain from Ste11 and identified two mutants that diminished binding to the Ste50 SAM domain. Building upon the Ste11 study, we present the NMR structure of the monomeric Ste50 SAM domain and a series of mutants bearing substitutions at surface-exposed hydrophobic amino acid residues. The mid-loop (ML) region of Ste11-SAM, defined by helices H3 and H4 and the end-helix (EH) region of Ste50-SAM, defined by helix H5, were sensitive to substitution, indicating that these two surfaces contribute to the high-affinity interaction. The combination of two mutants, Ste11-SAM-L72R and Ste50-SAM-L69R, formed a high-affinity heterodimer unencumbered by competing homotypic interactions that had prevented earlier NMR studies of the wild-type complex. Yeast bearing mutations that prevented the heterotypic Ste11-Ste50 association in vitro presented signaling defects in the mating and high-osmolarity growth pathways.  相似文献   

4.
Ste11, a homologue of mammalian MAPKKKs, together with its binding partner Ste50 works in a number of MAPK signaling pathways of Saccharomyces cerevisiae. Ste11/Ste50 binding is mediated by their sterile alpha motifs or SAM domains, of which homologues are also found in many other intracellular signaling and regulatory proteins. Here, we present the solution structure of the SAM domain or residues D37-R104 of Ste11 and its interactions with the cognate SAM domain-containing region of Ste50, residues M27-Q131. NMR pulse-field-gradient (PFG) and rotational correlation time measurements (tauc) establish that the Ste11 SAM domain exists predominantly as a symmetric dimer in solution. The solution structure of the dimeric Ste11 SAM domain consists of five well-defined helices per monomer packed into a compact globular structure. The dimeric structure of the SAM domain is maintained by a novel dimer interface involving interactions between a number of hydrophobic residues situated on helix 4 and at the beginning of the C-terminal long helix (helix 5). The dimer structure may also be stabilized by potential salt bridge interactions across the interface. NMR H/2H exchange experiments showed that binding of the Ste50 SAM to the Ste11 SAM very likely involves the positively charged extreme C-terminal region as well as exposed hydrophobic patches of the dimeric Ste11 SAM domain. The dimeric structure of the Ste11 SAM and its interactions with the Ste50 SAM may have important roles in the regulation and activation of the Ste11 kinase and signal transmission and amplifications through the Ste50-Ste11 complex.  相似文献   

5.
Sterile-alpha-motif (SAM) domains are common protein interaction motifs observed in organisms as diverse as yeast and human. They play a role in protein homo- and hetero-interactions in processes ranging from signal transduction to RNA binding. In addition, mutations in SAM domain and SAM-mediated oligomers have been linked to several diseases. To date, the observation of heterogeneous SAM-mediated oligomers in vivo has been elusive, which represents a common challenge in dissecting cellular biochemistry in live-cell systems. In this study, we report the oligomerization and binding stoichiometry of high-order, multi-component complexes of (SAM) domain proteins Ste11 and Ste50 in live yeast cells using fluorescence fluctuation methods. Fluorescence cross-correlation spectroscopy (FCCS) and 1-dimensional photon counting histogram (1dPCH) confirm the SAM-mediated interaction and oligomerization of Ste11 and Ste50. Two-dimensional PCH (2dPCH), with endogenously expressed proteins tagged with GFP or mCherry, uniquely indicates that Ste11 and Ste50 form a heterogeneous complex in the yeast cytosol comprised of a dimer of Ste11 and a monomer of Ste50. In addition, Ste50 also exists as a high order oligomer that does not interact with Ste11, and the size of this oligomer decreases in response to signals that activate the MAP kinase cascade. Surprisingly, a SAM domain mutant of Ste50 disrupted not only the Ste50 oligomers but also Ste11 dimerization. These results establish an in vivo model of Ste50 and Ste11 homo- and hetero-oligomerization and highlight the usefulness of 2dPCH for quantitative dissection of complex molecular interactions in genetic model organisms such as yeast.  相似文献   

6.
Ste11 is a MAPKKK from Saccharomyces cerevisiae that helps mediate the response to mating pheromone and the ability to thrive in high-salt environments. These diverse functions are facilitated by a direct interaction between the SAM domain of Ste11 with the SAM domain of its regulatory partner, Ste50. We have solved the NMR structure of the Ste11 SAM domain (PDB 1OW5), which reveals a compact, five alpha-helix bundle and a high degree of structural similarity to the Polyhomeotic SAM domain. The combined study of Ste11 SAM rotational correlation times and crosslinking to Ste50-SAM has suggested a mode through which Ste11-SAM oligomerizes and selectively associates with Ste50-SAM. To probe homotypic and heterotypic interations, Ste11-SAM variants each containing a substitution of a surface-exposed hydrophobic residue were constructed. An I59R variant of Ste11-SAM, disrupted binding to Ste50-SAM in vitro. Yeast expressing full-length Ste11-I59R could neither respond to mating pheromone nor thrive in high salt media-demonstrating that the interaction between Ste11 and Ste50 SAM domains is a prerequisite for key signal transduction events.  相似文献   

7.
8.
In Saccharomyces cerevisiae, pheromone response requires Ste5 scaffold protein, which ensures efficient G-protein-dependent recruitment of mitogen-activated protein kinase (MAPK) cascade components Ste11 (MAPK kinase kinase), Ste7 (MAPK kinase), and Fus3 (MAPK) to the plasma membrane for activation by Ste20 protein kinase. Ste20, which phosphorylates Ste11 to initiate signaling, is activated by binding to Cdc42 GTPase (membrane anchored via its C-terminal geranylgeranylation). Less clear is how activated and membrane-localized Ste20 contacts Ste11 to trigger invasive growth signaling, which also requires Ste7 and the MAPK Kss1, but not Ste5. Ste50 protein associates constitutively via an N-terminal sterile-alpha motif domain with Ste11, and this interaction is required for optimal invasive growth and hyperosmotic stress (high-osmolarity glycerol [HOG]) signaling but has a lesser role in pheromone response. We show that a conserved C-terminal, so-called "Ras association" (RA) domain in Ste50 is also essential for invasive growth and HOG signaling in vivo. In vitro the Ste50 RA domain is not able to associate with Ras2, but it does associate with Cdc42 and binds to a different face than does Ste20. RA domain function can be replaced by the nine C-terminal, plasma membrane-targeting residues (KKSKKCAIL) of Cdc42, and membrane-targeted Ste50 also suppresses the signaling deficiency of cdc42 alleles specifically defective in invasive growth. Thus, Ste50 serves as an adaptor to tether Ste11 to the plasma membrane and can do so via association with Cdc42, thereby permitting the encounter of Ste11 with activated Ste20.  相似文献   

9.
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen‐activated protein kinase cascades. In the current study, urea‐induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. Proteins 2014; 82:2957–2969. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as the Schizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity.  相似文献   

11.
The mitogen-activated protein kinase (MAPK) Byr2 and its activator Ste4 are involved in the mating pheromone response pathway of Schizosaccharomyces pombe and interact via their SAM domains. SAM domains can self-associate to form higher-order structures, including dimers, polymers and closed oligomers. Ste4-SAM is adjacent to a trimeric leucine zipper domain and we have shown previously that the two domains together (Ste4-LZ-SAM) bind to a monomeric Byr2-SAM with high affinity (Kd approximately 20 nM), forming a 3:1 complex. Here, we map the surfaces of Byr2-SAM and Ste4-SAM that is involved the interaction. A set of 38 mutants of Byr2-SAM and 33 mutants of Ste4-SAM were prepared, covering most of the protein surfaces. These mutants were purified and screened for binding, yielding a map of residues that are required for binding and a complementary map of residues that are not required. We find that the interface maps to regions of the SAM domains that are known to be important for the formation of SAM polymers. These results indicate that SAM domains can create a variety of oligomeric architectures utilizing common binding surfaces.  相似文献   

12.
SAM (sterile alpha motif) domains are protein-protein interaction modules found in a large number of regulatory proteins. Byr2 and Ste4 are two SAM domain-containing proteins in the mating pheromone response pathway of the fission yeast, Schizosaccharomyces pombe. Byr2 is a mitogen-activated protein kinase kinase kinase that is regulated by Ste4. Tu et al. (Tu, H., Barr, M., Dong, D. L., and Wigler, M. (1997) Mol. Cell. Biol. 17, 5876-5887) showed that the isolated SAM domain of Byr2 binds a fragment of Ste4 that contains both a leucine zipper (Ste4-LZ) domain as well as a SAM domain, suggesting that Byr2-SAM and Ste4-SAM may form a hetero-oligomer. Here, we show that the individual SAM domains of Ste4 and Byr2 are monomeric at low concentrations and bind to each other in a 1:1 stoichiometry with a relatively weak dissociation constant of 56 +/- 3 microm. Inclusion of the Ste4-LZ domain, which determines the oligomeric state of Ste4, has a dramatic effect on binding affinity, however. We find that the Ste4-LZ domain is trimeric and, when included with the Ste4-SAM domain, yields a 3:1 Ste4-LZ-SAM:Byr2-SAM complex with a tight dissociation constant of 19 +/- 4 nm. These results suggest that the Ste4-LZ-SAM protein may recognize multiple binding sites on Byr2-SAM, indicating a new mode of oligomeric organization for SAM domains. The fact that high affinity binding occurs only with the addition of an oligomerization domain suggests that it may be necessary to include ancillary oligomerization modules when searching for binding partners of SAM domains.  相似文献   

13.
Yeast mating signal transduction pathways require a heterotrimeric G protein composed of Gα, Gβ, and Gγ subunits connected to a mitogen-activated protein kinase (MAPK) module. While in Saccharomyces cerevisiae elimination of Gα induces constitutive activation of the mating pathway, in Kluyveromyces lactis it produces partial sterility, which indicates that K. lactis Gα (KlGα) is required to positively activate mating. We use physical interaction experiments to determine that KlGα interacts with the adaptor protein KlSte50p. The Ras association (RA) domain of KlSte50p favored interaction with the GDP-bound KlGα subunit, and when the KlGα protein is constitutively activated, the interaction drops significantly. Additionally, KlSte50p strongly associates with the MAPK kinase kinase (MAPKKK) KlSte11p through its sterile alpha motif (SAM) domain. Genetic experiments placed KlSte50p downstream of the G protein α subunit, indicating that KlGα may stimulate the mating pathway via KlSte50p. Fusion of KlSte50p to the KlGβ subunit partially eliminated the requirement of KlGα for mating, indicating that one contribution of KlGα to the mating pathway is to facilitate plasma membrane anchoring of KlSte50p.  相似文献   

14.
15.
The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress response, and maintenance of cell wall integrity. Here we characterized a Cryptococcus neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence.  相似文献   

16.
17.
A conserved MAP kinase cascade is central to signal transduction in both simple and complex eukaryotes. In the yeast Schizosaccharomyces pombe, Byr2, a homolog of mammalian MAPK/ERK kinase kinase and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation. A screen for S. pombe proteins that interact with Byr2 in a two-hybrid system led to the isolation of Ste4, a protein that is known to be required for sexual function. Ste4 binds to the regulatory region of Byr2. This binding site is separable from the binding site for Ras1. Both Ste4 and Ras1 act upstream of Byr2 and act at least partially independently. Ste4 contains a leucine zipper and is capable of homotypic interaction. Ste4 has regions of homology with STE50, an S. cerevisiae protein required for sexual differentiation that we show can bind to STE11.  相似文献   

18.
19.
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.  相似文献   

20.
BACKGROUND: Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS: Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS: Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号