首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa   总被引:1,自引:0,他引:1  
Protozoa contain thymidylate synthase (TS) and dihydrofolate reductase (DHFR) on the same polypeptide. In the bifunctional protein, the DHFR domain is on the amino terminus, TS is on the carboxyl terminus, and the two domains are separated by a junction peptide of varying size depending on the source. The native protein is composed of a dimer of two such subunits and is 110-140 kDa. Most studies of the bifunctional TS-DHFR have been performed with the protein from anti-folate resistant strains of Leishmania major, which show amplification of the TS-DHFR gene and overproduction of the bifunctional protein. The Leishmania TS-DHFR has also been highly expressed in heterologous systems. There appears to be extensive communication among domains and channeling of the H2folate product of TS to DHFR. Anti-folates commonly used to treat microbial infections are poor inhibitors of L. major DHFR. However, selective inhibition of L. major vs. human DHFR does not appear difficult to achieve, and selective inhibitors are known. The TS-DHFR from Plasmodium falciparum has also been cloned and has recently been expressed in Escherichia coli, albeit in small amounts. Interestingly, pyrimethamine-resistant strains of P. falciparum all have a common point mutation in the DHFR coding sequence (Thr/Ser 108 to Asn), which causes decreased binding of the folate analog. It is suggested that if an appropriate inhibitor of the pyrimethamine-resistant P. falciparum DHFRs can be found, it may serve in combination with pyrimethamine as an antimalarial regimen with low propensity for the development of resistance. In the future, we project that we will have a detailed knowledge of the structure and function of TS-DHFRs, and have the essential tools necessary for a molecular-based approach to drug design.  相似文献   

2.
Dasgupta T  Anderson KS 《Biochemistry》2008,47(5):1336-1345
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in nucleotide biosynthesis and a validated molecular drug target in malaria. Because P. falciparum TS and DHFR are highly homologous to their human counterparts, existing active-site antifolate drugs can have dose-limiting toxicities. In humans, TS and DHFR are two separate proteins. In P. falciparum, however, TS-DHFR is bifunctional, with both TS and DHFR active sites on a single polypeptide chain of the enzyme. Consequently, P. falciparum TS-DHFR contains unique distant or nonactive regions that might modulate catalysis: (1) an N-terminal tail and (2) a linker region tethering DHFR to TS, and encoding a crossover helix that forms critical electrostatic interactions with the DHFR active site. The role of these nonactive sites in the bifunctional P. falciparum TS-DHFR is unknown. We report the first in-depth, pre-steady-state kinetic characterization of the full-length, wild-type (WT) P. falciparum TS-DHFR enzyme and probe the role of distant, nonactive regions through mutational analysis. We show that the overall rate-limiting step in the WT P. falciparum TS-DHFR enzyme is TS catalysis. We further show that if TS is in an activated (liganded) conformation, the DHFR rate is 2-fold activated, from 60 s-1 to 130 s-1 in the WT enzyme. The TS rate is also reciprocally activated by approximately 1.5-fold if DHFR is in an activated, ligand-bound conformation. Mutations to the linker region affect neither catalytic rate nor domain-domain communication. Deletion of the N-terminal tail, although in a location remote from the active site, decreases the DHFR single rate and the bifunctional TS-DHFR rate by a factor of 2. The 2-fold activation of the DHFR rate by TS ligands remains intact, although even the activated N-terminal mutant has just half the DHFR activity of the WT enzyme. However, the reciprocal communication between TS active site and DHFR ligands is impaired in N-terminal mutants. Surprisingly, deletion of the analogous N-terminal tail in Leishmania major TS-DHFR causes a 3-fold enhancement of the DHFR rate from approximately 14 s-1 to approximately 40 s-1. In summary, our results demonstrate a complex interplay of domain-domain communication and nonactive-site modulation of catalysis in P. falciparum TS-DHFR. Furthermore, each parasitic TS-DHFR is activated by unique mechanisms, modulated by their nonactive site regions. Finally, our studies suggest the N-terminal tail of P. falciparum TS-DHFR is a highly selective, novel target for potential antifolate development in malaria.  相似文献   

3.
This study describes the use of rapid transient kinetic methods to characterize the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) enzyme from Toxoplasma gondii. In addition to elucidating the detailed kinetic scheme for this enzyme, this work provides the first direct kinetic evidence for the formation of a TS intermediate and for half-sites TS reactivity in human and Escherichia coli monofunctional TS and in T. gondii and Leishmania major bifunctional TS-DHFR. Comparison of the T. gondii TS-DHFR catalytic mechanism to that of the L. major enzyme reveals the mechanistic differences to be predominantly in DHFR activity. Specifically, TS ligand induced domain-domain communication involving DHFR activation is observed only in the L. major enzyme and, whereas both DHFR activities involve a rate-limiting conformational change, the change occurs at different positions along the kinetic pathway.  相似文献   

4.
Protozoal parasites are unusual in that their thymidylate synthase (TS) and dihydrofolate reductase (DHFR) enzymes exist on a single polypeptide. In an effort to probe the possibility of substrate channeling between the TS and DHFR active sites and to identify inhibitors specific for bifunctional TS-DHFR, we used molecular docking to screen for inhibitors targeting the shallow groove connecting the two active sites. Eosin B is a 100 microm non-active site inhibitor of Leishmania major TS-DHFR identified by molecular docking. Eosin B slows both the TS and DHFR reaction rates. When Arg-283, a key residue to which eosin B is predicted to bind, is mutated to glutamate, however, eosin B only minimally inhibits the TS-DHFR reaction. Additionally, eosin B was found to be a 180 microm inhibitor of Toxoplasma gondii in both biochemical and cell culture assays.  相似文献   

5.
This study presents a kinetic characterization of the recently crystallized bifunctional thymidylate synthasedihydrofolate reductase (TS-DHFR) enzyme from the apicomplexa parasite, Cryptosporidium hominis. Our study focuses on determination of the C. hominis TS-DHFR kinetic mechanism, substrate channeling behavior, and domain-domain communication. Unexpectedly, the unique mechanistic features of C. hominis TS-DHFR involve the highly conserved TS domain. At 45 s(-) (1), C. hominis TS activity is 10-40-fold faster than other TS enzymes studied and a new kinetic mechanism was required to simulate C. hominis TS behavior. A large accumulation of dihydrofolate produced at TS and a lag in product formation at DHFR were observed. These observations make C. hominis TS-DHFR the first bifunctional TS-DHFR enzyme studied for which there is clear evidence against dihydrofolate substrate channeling. Furthermore, whereas with Leishmania major TS-DHFR there are multiple lines of evidence for domain-domain communication (ligand binding at one active site affecting activity of the other enzyme), no such effects were observed with C. hominis TS-DHFR.  相似文献   

6.
In contrast with most species, including humans, which have monofunctional forms of the folate biosynthetic enzymes TS (thymidylate synthase) and DHFR (dihydrofolate reductase), several pathogenic protozoal parasites, including Cryptosporidium hominis, contain a bifunctional form of the enzymes on a single polypeptide chain having both catalytic activities. The crystal structure of the bifunctional enzyme TS-DHFR C. hominis reveals a dimer with a 'crossover helix', a swap domain between DHFR domains, unique in that this helical region from one monomer makes extensive contacts with the DHFR active site of the other monomer. In the present study, we used site-directed mutagenesis to probe the role of this crossover helix in DHFR catalysis. Mutations were made to the crossover helix: an 'alanine-face' enzyme in which the residues on the face of the helix close to the DHFR active site of the other subunit were mutated to alanine, a 'glycine-face' enzyme in which the same residues were mutated to glycine, and an 'all-alanine' helix in which all residues of the helix were mutated to alanine. These mutant enzymes were studied using a rapid transient kinetic approach. The mutations caused a dramatic decrease in the DHFR activity. The DHFR catalytic activity of the alanine-face mutant enzyme was 30 s(-1), the glycine-face mutant enzyme was 17 s(-1), and the all-alanine helix enzyme was 16 s(-1), all substantially impaired from the wild-type DHFR activity of 152 s(-1). It is clear that loss of helix interactions results in a marked decrease in DHFR activity, supporting a role for this swap domain in DHFR catalysis. The crossover helix provides a unique structural feature of C. hominis bifunctional TS-DHFR that could be exploited as a target for species-specific non-active site inhibitors.  相似文献   

7.
We have determined the crystal structure of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Cryptosporidium hominis, revealing a unique linker domain containing an 11-residue alpha-helix that has extensive interactions with the opposite DHFR-TS monomer of the homodimeric enzyme. Analysis of the structure of DHFR-TS from C. hominis and of previously solved structures of DHFR-TS from Plasmodium falciparum and Leishmania major reveals that the linker domain primarily controls the relative orientation of the DHFR and TS domains. Using the tertiary structure of the linker domains, we have been able to place a number of protozoa in two distinct and dissimilar structural families corresponding to two evolutionary families and provide the first structural evidence validating the use of DHFR-TS as a tool of phylogenetic classification. Furthermore, the structure of C. hominis DHFR-TS calls into question surface electrostatic channeling as the universal means of dihydrofolate transport between TS and DHFR in the bifunctional enzyme.  相似文献   

8.
The bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) of Leishmania major has been cloned and expressed in Escherichia coli and Saccharomyces cerevisiae. The strategy involved placing the entire 1560-bp coding sequence into a parent cloning plasmid that was designed to permit introduction of unique restriction sites at the 5'- and 3'-ends. In this manner, the entire coding sequence could be easily subcloned into a variety of expression vectors. High levels of TS-DHFR gene expression were driven by tac, pL and T7 RNA pol promoters in E. coli, and the GAPDH-ADH-2 promoter in S. cerevisiae. L. major TS-DHFR also complemented TS deficiency in E. coli. In E. coli, the protein accumulated to very high levels, but most was present as inactive inclusion bodies. Nevertheless, substantial amounts were soluble; up to 2% of the soluble protein was catalytically active TS-DHFR. In the yeast systems, essentially all of the bifunctional protein was soluble and catalytically active, and crude extracts contained about 100-fold more enzyme than do extracts from wild-type L. major. The expressed TS-DHFR from yeast and E. coli was purified to homogeneity by methotrexate-Sepharose affinity chromatography. About 8.5 mg of homogeneous, catalytically active protein is obtained from a 1-L culture of yeast, and 1.5 mg was obtained from 1 L of E. coli culture. A 200-L fermentation of the yeast expression system yielded a crude extract containing over 4 g of TS-DHFR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

10.
In most prokaryotic and eukaryotic organisms dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are encoded by independent genes. Evidence is presented here that the higher plant Arabidopsis thaliana has two bifunctional DHFR—TS genes. The structure of the genes, DHFR at the amino terminus and TS at the carboxy terminus, is identical to their organization in protozoa, the only other known organisms with bifunctional genes. Sequence alignments suggest that the bifunctional genes from protozoa and higher plants may have different evolutionary origins. The position of the introns support the complementary hypothesis that the DHFR domain of the bifunctional plant genes and the monofunctional DHFR gene of vertebrates derive from a common, intron-containing progenitor, although the structure (bifunctional or monofunctional) of the ancestral gene remains indeterminate. Comparison of the two bifunctional genes of Arabidopsis indicates that the DHFR and TS domains evolved at different rates; each following the evolutionary history of their monofunctional counterparts. In contrast to the DHFR domain, the evolution of the TS domain shows a higher level of nucleotide and amino acid sequence conservation, but a remarkable variability in the intron positions.  相似文献   

11.
The coding sequence of the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from a moderately pyrimethamine-resistant strain (HB3) of Plasmodium falciparum was assembled in a pUC expression vector. The coding sequence possesses unique Nco1 and Xba1 sites which flank 243 bp of the DHFR gene that include all point mutations thus far linked to pyrimethamine resistance. Wild-type (3D7) and highly pyrimethamine-resistant (7G8) TS-DHFRs were made from this vector by cassette mutagenesis using Nco1-Xba1 fragments from the corresponding cloned TS-DHFR genes. Catalytically active recombinant TS-DHFRs were expressed in Escherichia coli, albeit at low levels. Both TS and DHFR coeluted upon gel filtration and copurified upon affinity and anion exchange chromatography. Gel filtration and SDS-PAGE indicated that the enzyme was a dimer with identical 67-kDa subunits, characteristic of protozoan TS-DHFRs. Amino-terminal sequencing gave 10 amino acids which perfectly matched the sequence predicted from the nucleotide sequence. The recombinant TS-DHFR was purified to homogeneity by 10-formylfolate affinity chromatography followed by Mono Q FPLC. The inhibition properties of pyrimethamine toward the purified recombinant enzymes show that the point mutations are the molecular basis of pyrimethamine resistance in P. falciparum.  相似文献   

12.
The thymidylate synthase (TS) activity in Leishmania major resides on the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR). We have isolated, either by Sephadex G-25 chromatography or by nitrocellulose filter binding, a binary complex between the substrate deoxyuridylate (dUMP) and TS from L. major. The kinetics of binding support a "slow binding" mechanism in which dUMP initially binds to TS in a rapid, reversible pre-equilibrium step (Kd approximately 1 microM), followed by a slow first-order step (k = 3.5 X 10(-3) s-1) which results in the isolable complex; the rate constant for the dissociation of dUMP from this complex was 2.3 X 10(-4) s-1, and the overall dissociation constant was approximately 0.1 microM. The stoichiometry of dUMP to enzyme appears to be 1 mol of nucleotide bound/mol of dimeric TS-DHFR. Binary complexes between the stoichiometric inhibitor 5-fluorodeoxyuridylate (FdUMP) and TS, and between the product deoxythymidylate (dTMP) and TS were also isolated by nitrocellulose filter binding. Competition experiments indicated that each of these nucleotides were binding to the same site on the enzyme and that this site was the same as that occupied by the nucleotide in the FdUMP-cofactor X TS ternary complex. Thus, it appeared that the binary complexes were occupying the active site of TS. However, the preformed isolable dUMP X TS complex is neither on the catalytic path to dTMP nor did it inhibit TS activity, even though the dissociation of dUMP from this complex is several orders of magnitude slower than catalytic turnover (approximately 3 s-1). The results suggest that dUMP binds to one of the two subunits of the native protein in a catalytically incompetent form which does not inhibit activity of the other subunit.  相似文献   

13.
BackgroundMulti-target approaches are necessary to properly analyze or modify the function of a biochemical pathway or a protein family. An example of such a problem is the repurposing of the known human anti-cancer drugs, antifolates, as selective anti-parasitic agents. This requires considering a set of experimentally validated protein targets in the folate pathway of major pathogenic trypanosomatid parasites and humans: (i) the primary parasite on-targets: pteridine reductase 1 (PTR1) (absent in humans) and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR–TS), (ii) the primary off-targets: human DHFR and TS, and (iii) the secondary on-target: human folate receptor β, a folate/antifolate transporter.MethodsWe computationally compared the structural, dynamic and physico-chemical properties of the targets. We based our analysis on available inhibitory activity and crystallographic data, including a crystal structure of the bifunctional T. cruzi DHFR–TS with tetrahydrofolate bound determined in this work. Due to the low sequence and structural similarity of the targets analyzed, we employed a mapping of binding pockets based on the known common ligands, folate and methotrexate.ResultsOur analysis provides a set of practical strategies for the design of selective trypanosomatid folate pathway inhibitors, which are supported by enzyme inhibition measurements and crystallographic structures.ConclusionsThe ligand-based comparative computational mapping of protein binding pockets provides a basis for repurposing of anti-folates and the design of new anti-trypanosmatid agents.General significanceApart from the target-based discovery of selective compounds, our approach may be also applied for protein engineering or analyzing evolutionary relationships in protein families.  相似文献   

14.
The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the malarial parasite Plasmodium, are bifunctional, possessing DHFR and thymidylate synthase (TS) domains. Here using genetic knockout lines we confirmed that either DHFR‐TS1 or DHFR‐TS2 (but not DHFR‐TS3) was essential for seed development. Screening mutated Arabidopsis thaliana seeds for resistance to antimalarial DHFR‐inhibitor drugs pyrimethamine and cycloguanil identified causal lesions in DHFR‐TS1 and DHFR‐TS2, respectively, near the predicted substrate‐binding site. The different drug resistance profiles for the plants, enabled by the G137D mutation in DHFR‐TS1 and the A71V mutation in DHFR‐TS2, were consistent with biochemical studies using recombinant proteins and could be explained by structural models. These findings provide a great improvement in our understanding of plant DHFR‐TS and suggest how plant‐specific inhibitors might be developed, as DHFR is not currently targeted by commercial herbicides.  相似文献   

15.
In Plasmodium falciparum, dihydrofolate reductase and thymidylate synthase activities are conferred by a single 70-kDa bifunctional polypeptide (DHFR-TS, dihydrofolate reductase-thymidylate synthase) which assembles into a functional 140-kDa homodimer. In mammals, the two enzymes are smaller distinct molecules encoded on different genes. A 27-kDa amino domain of malarial DHFR-TS is sufficient to provide DHFR activity, but the structural requirements for TS function have not been established. Although the 3'-end of DHFR-TS has high homology to TS sequences from other species, expression of this protein fragment failed to yield active TS enzyme, and it failed to complement TS(-) Escherichia coli. Unexpectedly, even partial 5'-deletion of full-length DHFR-TS gene abolished TS function on the 3'-end. Thus, it was hypothesized that the amino end of the bifunctional parasite protein plays an important role in TS function. When the 27-kDa amino domain (DHFR) was provided in trans, a previously inactive 40-kDa carboxyl-domain from malarial DHFR-TS regained its TS function. Physical characterization of the "split enzymes" revealed that the 27- and the 40-kDa fragments of DHFR-TS had reassembled into a 140-kDa hybrid complex. Thus, in malarial DHFR-TS, there are physical interactions between the DHFR domain and the TS domain, and these interactions are necessary to obtain a catalytically active TS. Interference with these essential protein-protein interactions could lead to new selective strategies to treat malaria resistant to traditional DHFR-TS inhibitors.  相似文献   

16.
The bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Daucus carota has been further characterized as regards molecular weight, amino acid composition, protease digestion and microsequencing of proteolytic peptides. Data reported in this paper demonstrate that the carrot protein has a calculated M r of 124000 thus indicating that, contrarily to what has previously been suggested, it occurs as a dimer of identical subunits. Results of partial amino acid microsequencing show the presence of sequences highly homologous with those of the active sites of both DHFR and TS from other organisms confirming, at the structural level, the bifunctional nature of the carrot protein. As in the case of Leishmania tropica DHFR-TS, incubation of the carrot protein with V8 protease led to a rapid loss of TS activity while retaining that of DHFR. However the pattern of proteolysis did not allow to establish whether the sequence of domains is DHFR-TS as in Leishmania, or vice versa. Low homology of other amino acid sequences, as judged by computer analysis, and absence of common epitopes indicate an apparent divergence between carrot and leishmanian proteins.  相似文献   

17.
Pneumocystis carinii and Toxoplasma gondii are opportunistic pathogens of immunosuppressed patients that are susceptible to therapy with inhibitors of dihydrofolate reductase (DHFR). The DHFR of these two organisms was characterized to facilitate the identification of more selective inhibitors. Similar to all reported protozoa, T. gondii has a bifunctional enzyme, of 120,000 Da, that possesses both DHFR and thymidylate synthase (TS) activity. Unexpectedly, P. carinii DHFR activity was present on a small molecule, of 26,000 Da. T. gondii DHFR and TS activity coeluted during affinity chromatography using a methotrexate-Sepharose column, whereas P. carinii DHFR and TS activity could be separated by affinity chromatography using the same column. P. carinii DHFR could be easily distinguished from rat DHFR, which is similar in size, by the differences in Km for dihydrofolate (P. carinii, 17.6 +/- 3.9 microM; rat, 4.0 +/- 2.2 microM). Since all protozoa reported have a large molecular weight, bifunctional DHFR, these studies support the classification of P. carinii as a fungus. These studies also provide a basis for the development of more effective therapeutic agents for these pathogens.  相似文献   

18.
Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target of antimalarial drugs. The efficacy of this class of DHFR-inhibitor drugs is now compromised because of mutations that prevent drug binding yet retain enzyme activity. The crystal structures of PfDHFR-TS from the wild type (TM4/8.2) and the quadruple drug-resistant mutant (V1/S) strains, in complex with a potent inhibitor WR99210, as well as the resistant double mutant (K1 CB1) with the antimalarial pyrimethamine, reveal features for overcoming resistance. In contrast to pyrimethamine, the flexible side chain of WR99210 can adopt a conformation that fits well in the active site, thereby contributing to binding. The single-chain bifunctional PfDHFR-TS has a helical insert between the DHFR and TS domains that is involved in dimerization and domain organization. Moreover, positively charged grooves on the surface of the dimer suggest a function in channeling of substrate from TS to DHFR active sites. These features provide possible approaches for the design of new drugs to overcome antifolate resistance.  相似文献   

19.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

20.
Currently, there is no effective therapy for cryptosporidiosis and it is unclear why antifolate drugs which are effective treatments for infections caused by closely related parasites are not also effective against Cryptosporidium parvum. In protozoa, the target of these drugs, dihydrofolate reductase (DHFR), exists as a bifunctional enzyme also manifesting thymidylate synthase (TS) activity and is encoded by a fused DHFR-TS gene. In order to prepare a probe to isolate the C. parvum DHFR-TS gene we have used degenerate oligonucleotides whose sequences are based on strongly conserved regions of TS protein sequence to prime the polymerase chain reaction (PCR) with C. parvum DNA. The PCR amplified a 375-bp DNA fragment which was cloned and sequenced; the deduced amino acid sequence had significant identity with known TS sequences, including strict conservation of all phylogenetically invariant TS amino acid residues. The cloned PCR fragment was used as a probe to isolate a number of overlapping clones from a C. parvum genomic library which were definitively shown to be of cryptosporidial origin by genomic Southern and molecular karyotype analyses. The deduced protein sequence of C. parvum TS was most similar to the bifunctional TS enzymes of Plasmodium chabaudi and Plasmodium falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号