首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of dioxygen by the carboxylate-bridged diiron(II) cluster in the R2 subunit of class I ribonucleotide reductase from Escherichia coli results in the one-electron oxidation of tyrosine 122 (Y122) to a stable radical (Y122*). A key step in this reaction is the rapid transfer of a single electron from a near-surface residue, tryptophan 48 (W48), to an adduct between O(2) and diiron(II) cluster to generate a readily reducible cation radical (W48(+)(*)) and the formally Fe(IV)Fe(III) intermediate known as cluster X. Previous work showed that this electron injection step is blocked in the R2 variant with W48 replaced by phenylalanine [Krebs, C., Chen, S., Baldwin, J., Ley, B. A., Patel, U., Edmondson, D. E., Huynh, B. H., and Bollinger, J. M., Jr. (2000) J. Am. Chem. Soc. 122, 12207-12219]. In this study, we show that substitution of W48 with alanine similarly disables the electron transfer (ET) but also permits its chemical mediation by indole compounds. In the presence of an indole mediator, O(2) activation in the R2-W48A variant produces approximately 1 equiv of stable Y122* and more than 1 equiv of the normal (micro-oxo)diiron(III) product. In the absence of a mediator, the variant protein generates primarily altered Fe(III) products and only one-fourth as much stable Y122* because, as previously reported for R2-W48F, most of the Y122* that is produced decays as a consequence of the inability of the protein to mediate reductive quenching of one of the two oxidizing equivalents of the initial diiron(II)-O(2) complex. Mediation of ET is effective in W48A variants containing additional substitutions that also impact the reaction mechanism or outcome. In the reaction of R2-W48A/F208Y, the presence of mediator suppresses formation of the Y208-derived diiron(III)-catecholate product (which is predominant in R2-F208Y in the absence of reductants) in favor of Y122*. In the reaction of R2-W48A/D84E, the presence of mediator affects the outcome of decay of the peroxodiiron(III) intermediate known to accumulate in D84E variants, increasing the yield of Y122* by as much as 2.2-fold to a final value of 0.75 equiv and suppressing formation of a 490 nm absorbing product that results from decay of the two-electron oxidized intermediate in the absence of a functional ET apparatus.  相似文献   

2.
Activation of O2 by the diiron(II/II) cluster in protein R2 of class I ribonucleotide reductase generates the enzyme's essential tyrosyl radical. A crucial step in this reaction is the transfer of an electron from solution to a diiron(II/II)-O2 adduct during formation of the radical-generating, diiron(III/IV) intermediate X. In the reaction of R2 from Escherichia coli, this electron injection is initiated by the rapid (>400 s-1 at 5 degrees C), transient oxidation of the near-surface residue, tryptophan 48, to a cation radical and is blocked by substitution of W48 with F, A, G, Y, L, or Q. By contrast, a study of the cognate reaction in protein R2 from mouse suggested that electron injection might be the slowest step in generation of its tyrosyl radical, Y177* [Schmidt, P. P., Rova, U., Katterle, B., Thelander, L., and Gr?slund, A. (1998) J. Biol. Chem. 273, 21463-21472]. The crucial evidence was the observation that Y177* production is slowed by approximately 30-fold upon substitution of W103, the cognate of the electron-shuttling W48 in E. coli R2, with tyrosine. In this work, we have applied stopped-flow absorption and freeze-quench electron paramagnetic resonance and M?ssbauer spectroscopies to the mouse R2 reaction to evaluate the possibility that an already sluggish electron-transfer step is slowed by 30-fold by substitution of this key residue. The drastically reduced accumulation of cluster X, failure of precursors to the intermediate to accumulate, and, most importantly, first-order dependence of the rate of Y177* formation on the concentration of O2 prove that addition of O2 to the diiron(II/II) cluster, rather than electron injection, is the slowest step in the R2-W103Y reaction. This finding indicates that the basis for the slowing of Y177* formation by the W103Y substitution is an unexpected secondary effect on the structure or dynamics of the protein, its diiron(II/II) cluster, or both rather than the expected chemical effect on the electron injection step.  相似文献   

3.
The kinetics and mechanism of formation of the tyrosyl radical and mu-(oxo)diiron(III) cluster in the R2 subunit of ribonucleotide reductase from mouse have been examined by stopped-flow absorption and freeze-quench electron paramagnetic resonance and M?ssbauer spectroscopies. The reaction comprises (1) acquisition of Fe(II) ions by the R2 apo protein, (2) activation of dioxygen at the resulting carboxylate-bridged diiron(II) cluster to form oxidized intermediate diiron species, and (3) univalent oxidation of Y177 by one of these intermediates to form the stable radical, with concomitant or subsequent formation of the adjacent mu-(oxo)diiron(III) cluster. The data establish that an oxidized diiron intermediate spectroscopically similar to the well-characterized, formally Fe(III)Fe(IV) cluster X from the reaction of the Escherichia coli R2 protein precedes the Y177 radical in the reaction sequence and is probably the Y177 oxidant. As formation of the X intermediate (1) requires transfer of an "extra" reducing equivalent to the buried diiron cluster following the addition of dioxygen and (2) is observed to be rapid relative to other steps in the reaction, the present data indicate that the transfer of this reducing equivalent is not rate-limiting for Y177 radical formation, in contrast to what was previously proposed (Schmidt, P. P., Rova, U., Katterle, B., Thelander, L., and Gr?slund, A. (1998) J. Biol. Chem. 273, 21463-21472). Indeed, the formation of X (k(obs) = 13 +/- 3 s(-1) at 5 degrees C and 0.95 mM O(2)) and the decay of the intermediate to give the Y177 radical (k(obs) = 5 +/- 2 s(-1)) are both considerably faster than the formation of the reactive Fe(II)-R2 complex from the apo protein and Fe(II)(aq) (k(obs) = 0.29 +/- 0.03 s(-1)), which is the slowest step overall. The conclusions that cluster X is an intermediate in Y177 radical formation and that transfer of the reducing equivalent is relatively facile imply that the mouse R2 and E. coli R2 reactions are mechanistically similar.  相似文献   

4.
The oxygen-centered radical bound to the trinuclear copper center was detected as an intermediate during the reoxidation process of the reduced Rhus vernicifera laccase with dioxygen and characterized by using absorption, stopped-flow, and electron paramagnetic resonance (EPR) spectroscopies and by super conducting quantum interface devices measurement. The intermediate bands appeared at 370 nm (epsilon approximately 1000), 420 nm (sh), and 670 nm (weak) within 15 ms, and were observable for approximately 2 min at pH 7.4 but for less than 5 s at pH 4.2. The first-order rate constant for the decay of the intermediate has been determined by stopped-flow spectroscopy, showing the isotope effect, k(H)/k(D) of 1.4 in D(2)O. The intermediate was found to decay mainly from the protonated form by analyzing pH dependences. The enthalpy and entropy of activation suggested that a considerable structure change takes place around the active site during the decay of the intermediate. The EPR spectra at cryogenic temperatures (<27 K) showed two broad signals with g approximately 1.8 and 1.6 depending on pH. We propose an oxygen-centered radical in magnetic interaction with the oxidized type III copper ions as the structure of the three-electron reduced form of dioxygen.  相似文献   

5.
Song WJ  Lippard SJ 《Biochemistry》2011,50(23):5391-5399
Site-directed mutagenesis studies of a strictly conserved T201 residue in the active site of toluene/o-xylene monooxygenase hydroxylase (ToMOH) revealed that a single mutation can facilitate kinetic isolation of two distinctive peroxodiiron(III) species, designated T201(peroxo) and ToMOH(peroxo), during dioxygen activation. Previously, we characterized both oxygenated intermediates by UV-vis and Mo?ssbauer spectroscopy, proposed structures from DFT and QM/MM computational studies, and elucidated chemical steps involved in dioxygen activation through the kinetic studies of T201(peroxo) formation. In this study, we investigate the kinetics of T201(peroxo) decay to explore the reaction mechanism of the oxygenated intermediates following O(2) activation. The decay rates of T201(peroxo) were monitored in the absence and presence of external (phenol) or internal (tryptophan residue in an I100W variant) substrates under pre-steady-state conditions. Three possible reaction models for the formation and decay of T201(peroxo) were evaluated, and the results demonstrate that this species is on the pathway of arene oxidation and appears to be in equilibrium with ToMOH(peroxo).  相似文献   

6.
Saleh L  Krebs C  Ley BA  Naik S  Huynh BH  Bollinger JM 《Biochemistry》2004,43(20):5953-5964
A key step in generation of the catalytically essential tyrosyl radical (Y122(*)) in protein R2 of Escherichia coli ribonucleotide reductase is electron transfer (ET) from the near-surface residue, tryptophan 48 (W48), to a (Fe(2)O(2))(4+) complex formed by addition of O(2) to the carboxylate-bridged diiron(II) cluster. Because this step is rapid, the (Fe(2)O(2))(4+) complex does not accumulate and, therefore, has not been characterized. The product of the ET step is a "diradical" intermediate state containing the well-characterized Fe(IV)Fe(III) cluster, X, and a W48 cation radical (W48(+)(*)). The latter may be reduced from solution to complete the two-step transfer of an electron to the buried diiron site. In this study, a (Fe(2)O(2))(4+) state that is probably the precursor to the X-W48(+)(*) diradical state in the reaction of the wild-type protein (R2-wt) has been characterized by exploitation of the observation that in R2 variants with W48 replaced with alanine (A), the otherwise disabled ET step can be mediated by indole compounds. Mixing of the Fe(II) complex of R2-W48A/Y122F with O(2) results in accumulation of an intermediate state that rapidly converts to X upon mixing with 3-methylindole (3-MI). The state comprises at least two species, of which each exhibits an apparent M?ssbauer quadrupole doublet with parameters characteristic of high-spin Fe(III) ions. The isomer shifts of these complexes and absence of magnetic hyperfine coupling in their M?ssbauer spectra suggest that both are antiferromagnetically coupled diiron(III) clusters. The fact that both rapidly convert to X upon treatment with a molecule (3-MI) shown in the preceding paper to mediate ET in W48A R2 variants indicates that they are more oxidized than X by one electron, which suggests that they have a bound peroxide equivalent. Their failure to exhibit either the long-wavelength absorption (at 650-750 nm) or M?ssbauer doublet with high isomer shift (>0.6 mm/s) that are characteristic of the putatively mu-1,2-peroxo-bridged diiron(III) intermediates that have been detected in the reactions of methane monooxygenase (P or H(peroxo)) and variants of R2 with the D84E ligand substitution suggests that they have geometries and electronic structures different from those of the previously characterized complexes. Supporting this deduction, the peroxodiiron(III) complex that accumulates in R2-W48A/D84E is much less reactive toward 3-MI-mediated reduction than the (Fe(2)O(2))(4+) state in R2-W48A/Y122F. It is postulated that the new (Fe(2)O(2))(4+) state is either an early adduct in an orthogonal pathway for oxygen activation or, more likely, the successor to a (mu-1,2-peroxo)diiron(III) complex that is extremely fleeting in R2 proteins with the wild-type ligand set but longer lived in D84E-containing variants.  相似文献   

7.
Reduction of the soluble methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) in frozen 4:1 buffer/glycerol solutions at 77 K by mobile electrons generated by gamma-irradiation produces an EPR-detectable, mixed-valent Fe(II)Fe(III) center. At this temperature the conformation of the enzyme remains essentially unaltered during reduction, so the mixed-valent EPR spectra serve to probe the active site structure of the EPR-silent, diiron(III) state. The EPR spectra of the cryoreduced samples reveal that the diiron(III) cluster of the resting hydroxylase has at least two chemically distinct forms, the structures of which differ from that of the equilibrium Fe(II)Fe(III) site. Their relative populations depend on pH, the presence of component B, and formation of the MMOH/MMOB complex by reoxidation of the reduced, diiron(II) hydroxylase. The formation of complexes between MMOB, MMOR, and the oxidized hydroxylase does not measurably affect the structure of the diiron(III) site. Cryogenic reduction in combination with EPR spectroscopy has also provided information about interaction of MMOH in the diiron(III) state with small molecules. The diiron(III) center binds methanol and phenols, whereas DMSO and methane have no measurable effect on the EPR properties of cryoreduced hydroxylase. Addition of component B favors the binding of some exogenous ligands, such as DMSO and glycerol, to the active site diiron(III) state and markedly perturbs the structure of the diiron(III) cluster complexed with methanol or phenol. The results reveal different reactivity of the Fe(III)Fe(III) and Fe(II)Fe(III) redox states of MMOH toward exogenous ligands. Moreover, unlike oxidized hydroxylase, the binding of exogenous ligands to the protein in the mixed-valent state is allosterically inhibited by MMOB. The differential reactivity of the hydroxylase in its diiron(III) and mixed-valent states toward small molecules, as well as the structural basis for the regulatory effects of component B, is interpreted in terms of a model involving carboxylate shifts of a flexible glutamate ligand at the Fe(II)Fe(III) center.  相似文献   

8.
Soluble methane monooxygenases utilize a carboxylate-bridged diiron center and dioxygen to convert methane to methanol. A diiron(IV) oxo intermediate Q is the active species for this process. Alternative substrates and theoretical studies can help elucidate the mechanism. Experimental results for reactions with derivatized methanes were previously modeled by a combination of quantum mechanical/molecular mechanical techniques and the model was extended to predict the relative reactivity of fluoromethane. We therefore studied reactions of Q with CF(n)H(4-n) (n=1-3) to test the prediction. The kinetics of single-turnover reactions of Q with these substrates were monitored by double-mixing stopped-flow optical spectroscopy. For fluoro- and difluoromethane, conversion to the alcohols occurred with second-order rate constants less than that of methane, the values being 28,700 (CH4)>25,000 (CFH3)>9300 (CF2H2) M(-1) s(-1). KIE values for C-H versus C-D activation above the classical limit were observed, requiring modification of the theoretical predictions.  相似文献   

9.
The oxygen cleavage in Chlamydia trachomatis ribonucleotide reductase (RNR) has been studied using B3LYP* hybrid density functional theory. Class Ic C. trachomatis RNR lacks the radical-bearing tyrosine, crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)–Tyr(rad) active state, C. trachomatis RNR has a mixed Mn(IV)Fe(III) metal center in subunit II (R2). A mixed MnFe metal center has never been observed as a radical cofactor before. The active state is generated by reductive oxygen cleavage at the metal site. On the basis of calculated barriers for oxygen cleavage in C. trachomatis R2 and R2 from Escherichia coli with a diiron, a mixed manganese–iron, and a dimanganese center, conclusions can be drawn about the effect of changing metals in R2. The oxygen cleavage is found to be governed by two factors: the redox potentials of the metals and the relative stability of the different peroxides. Mn(IV) has higher stability than Fe(IV), and the barrier is therefore lower with a mixed metal center than with a diiron center. With a dimanganese center, an asymmetric peroxide is more stable than the symmetric peroxide, and the barrier therefore becomes too high. Calculated proton-coupled redox potentials are compared to identify three possible R2 active states, the Fe(III)Fe(III)–Tyr(rad) state, the Mn(IV)Fe(III) state, and the Mn(IV)Mn(IV) state. A tentative energy profile of the thermodynamics of the radical transfer from R2 to subunit I is constructed to illustrate how the stability of the active states can be understood from a thermodynamical point of view.  相似文献   

10.
The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (Hred) were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and M?ssbauer spectroscopy. Reaction of NO with Hred affords a dinitrosyl species, designated Hdinitrosyl, with optical spectra (lambdamax = 450 and 620 nm) and M?ssbauer parameters (delta = 0.72 mm/s, DeltaEQ = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The Hdinitrosyl species models features of the Hperoxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, Hdinitrosyl builds up with approximately the same rate constant as Hperoxo ( approximately 26 s-1) at 4 degrees C. In the absence of protein B, the kinetics of Hdinitrosyl formation were best fit with a biphasic A --> B --> C model, indicating the presence of an intermediate species between Hred and Hdinitrosyl. This result contrasts with the reaction of Hred with dioxygen, in which the Hperoxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.  相似文献   

11.
A conventional class I (subclass a or b) ribonucleotide reductase (RNR) employs a tyrosyl radical (Y (*)) in its R2 subunit for reversible generation of a 3'-hydrogen-abstracting cysteine radical in its R1 subunit by proton-coupled electron transfer (PCET) through a network of aromatic amino acids spanning the two subunits. The class Ic RNR from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor (specifically, the Mn (IV) ion) in place of the Y (*) for radical initiation. Ct R2 is activated when its Mn (II)/Fe (II) form reacts with O 2 to generate a Mn (IV)/Fe (IV) intermediate, which decays by reduction of the Fe (IV) site to the active Mn (IV)/Fe (III) state. Here we show that the reduction step in this sequence is mediated by residue Y222. Substitution of Y222 with F retards the intrinsic decay of the Mn (IV)/Fe (IV) intermediate by approximately 10-fold and diminishes the ability of ascorbate to accelerate the decay by approximately 65-fold but has no detectable effect on the catalytic activity of the Mn (IV)/Fe (III)-R2 product. By contrast, substitution of Y338, the cognate of the subunit interfacial R2 residue in the R1 <--> R2 PCET pathway of the conventional class I RNRs [Y356 in Escherichia coli ( Ec) R2], has almost no effect on decay of the Mn (IV)/Fe (IV) intermediate but abolishes catalytic activity. Substitution of W51, the Ct R2 cognate of the cofactor-proximal R1 <--> R2 PCET pathway residue in the conventional class I RNRs (W48 in Ec R2), both retards reduction of the Mn (IV)/Fe (IV) intermediate and abolishes catalytic activity. These observations imply that Ct R2 has evolved branched pathways for electron relay to the cofactor during activation and catalysis. Other R2s predicted also to employ the Mn/Fe cofactor have Y or W (also competent for electron relay) aligning with Y222 of Ct R2. By contrast, many R2s known or expected to use the conventional Y (*)-based system have redox-inactive L or F residues at this position. Thus, the presence of branched activation- and catalysis-specific electron relay pathways may be functionally important uniquely in the Mn/Fe-dependent class Ic R2s.  相似文献   

12.
The diiron(II) cluster in the R2 subunit of Escherichia coli ribonucleotide reductase (RNR) activates oxygen to generate a mu-oxodiiron(III) cluster and the stable tyrosyl radical that is critical for the conversion of ribonucleotides to deoxyribonucleotides. Like those in other diiron carboxylate proteins, such as methane monooxygenase (MMO), the R2 diiron cluster is proposed to activate oxygen by formation of a peroxodiiron(III) intermediate followed by an oxidizing high-valent cluster. Substitution of key active site residues results in perturbations of the normal oxygen activation pathway. Variants in which the active site ligand, aspartate (D) 84, is changed to glutamate (E) are capable of accumulating a mu-peroxodiiron(III) complex in the reaction pathway. Using rapid freeze-quench techniques, this intermediate in a double variant, R2-W48A/D84E, was trapped for characterization by M?ssbauer and X-ray absorption spectroscopy. These samples contained 70% peroxodiiron(III) intermediate and 30% diferrous R2. An Fe-Fe distance of 2.5 A was found to be associated with the peroxo intermediate. As has been proposed for the structures of the higher valent intermediates in both R2 and MMO, carboxylate shifts to a mu-(eta(1),eta(2)) or a mu-1,1 conformation would most likely be required to accommodate the short 2.5 A Fe-Fe distance. In addition, the diferrous form of the enzyme present in the reacted sample has a longer Fe-Fe distance (3.5 A) than does a sample of anaerobically prepared diferrous R2 (3.4 A). Possible explanations for this difference in detected Fe-Fe distance include an O(2)-induced conformational change prior to covalent chemistry or differing O(2) reactivity among multiple diiron(II) forms of the cluster.  相似文献   

13.
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe?Fe distances found for the five samples fall within a narrow range of 3.4–3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe?Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.  相似文献   

14.
Mei H  Geren L  Miller MA  Durham B  Millett F 《Biochemistry》2002,41(12):3968-3976
The interaction of yeast iso-1-cytochrome c (yCc) with the high- and low-affinity binding sites on cytochrome c peroxidase compound I (CMPI) was studied by stopped-flow spectroscopy. When 3 microM reduced yCc(II) was mixed with 0.5 microM CMPI at 10 mM ionic strength, the Trp-191 radical cation was reduced from the high-affinity site with an apparent rate constant >3000 s(-1), followed by slow reduction of the oxyferryl heme with a rate constant of only 10 s(-1). In contrast, mixing 3 microM reduced yCc(II) with 0.5 microM preformed CMPI *yCc(III) complex led to reduction of the radical cation with a rate constant of 10 s(-1), followed by reduction of the oxyferryl heme in compound II with the same rate constant. The rate constants for reduction of the radical cation and the oxyferryl heme both increased with increasing concentrations of yCc(II) and remained equal to each other. These results are consistent with a mechanism in which both the Trp-191 radical cation and the oxyferryl heme are reduced by yCc(II) in the high-affinity binding site, and the reaction is rate-limited by product dissociation of yCc(III) from the high-affinity site with apparent rate constant k(d). Binding yCc(II) to the low-affinity site is proposed to increase the rate constant for dissociation of yCc(III) from the high-affinity site in a substrate-assisted product dissociation mechanism. The value of k(d) is <5 s(-1) for the 1:1 complex and >2000 s(-1) for the 2:1 complex at 10 mM ionic strength. The reaction of horse Cc(II) with CMPI was greatly inhibited by binding 1 equiv of yCc(III) to the high-affinity site, providing evidence that reduction of the oxyferryl heme involves electron transfer from the high-affinity binding site rather than the low-affinity site. The effects of CcP surface mutations on the dissociation rate constant indicate that the high-affinity binding site used for the reaction in solution is the same as the one identified in the yCc*CcP crystal structure.  相似文献   

15.
Stopped-flow absorption and freeze-quench electron paramagnetic resonance (EPR) and M?ssbauer spectroscopies have been used to obtain evidence for the intermediacy of a (mu-1,2-peroxo)diiron(III/III) complex on the pathway to the tyrosyl radical and (mu-oxo)diiron(III/III) cluster during assembly of the essential cofactor in the R2 subunit of ribonucleotide reductase from mouse. The complex accumulates to approximately 0.4 equiv in the first few milliseconds of the reaction and decays concomitantly with accumulation of the previously detected diiron(III/IV) cluster, X, which generates the tyrosyl radical and product (mu-oxo)diiron(III/III) cluster. Kinetic complexities in the reaction suggest the existence of an anti-cooperative interaction of the monomers of the R2 homodimer in Fe(II) binding and perhaps O2 activation. The detection of the (mu-1,2-peroxo)diiron(III/III) complex, which has spectroscopic properties similar to those of complexes previously characterized in the reactions of soluble methane monooxygenase, stearoyl acyl carrier protein Delta9 desaturase, and variants of Escherichia coli R2 with the iron ligand substitution, D84E, provides support for the hypothesis that the reactions of the diiron-carboxylate oxidases and oxygenases commence with the formation of this common intermediate.  相似文献   

16.
Saleh L  Bollinger JM 《Biochemistry》2006,45(29):8823-8830
A tryptophan 48 cation radical (W48(+)(*)) forms concomitantly with the Fe(2)(III/IV) cluster, X, during activation of oxygen for tyrosyl radical (Y122.) production in the R2 subunit of class I ribonucleotide reductase (RNR) from Escherichia coli. W48(+)(*) is also likely to be an intermediate in the long-range radical transfer between R2 and its partner subunit, R1, during nucleotide reduction by the RNR holoenzyme. The kinetics of decay of W48(+)(*) and formation of tyrosyl radicals during O(2) activation (in the absence of R1) in wild-type (wt) R2 and in variants with either Y122, Y356 (the residue thought to propagate the radical from W48(+)(*) into R1 during turnover), or both replaced by phenylalanine (F) have revealed that the presence of divalent cations at concentrations similar to the [Mg(2+)] employed in the standard RNR assay (15 mM) mediates a rapid radical-transfer equilibrium between W48 and Y356. Cation-mediated propagation of the radical from W48 to Y356 gives rise to a fast phase of Y. production that is essentially coincident with W48(+)(*) formation and creates an efficient pathway for decay of W48(+)(*). Possible mechanisms of this cation mediation and its potential relevance to intersubunit radical transfer during nucleotide reduction are considered.  相似文献   

17.
Byrdin M  Villette S  Eker AP  Brettel K 《Biochemistry》2007,46(35):10072-10077
DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH-. Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees . The catalytically potent state FADH- can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees , in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329]. Later it was realized that two more tryptophans (W382 and W359) are located between the flavin and W306; they may mediate the electron transfer from W306 to the flavin either by the superexchange mechanism (where they would enhance the electronic coupling between the flavin and W306 without being oxidized at any time) or as real redox intermediates in a three-step electron hopping process (FADH degrees * <-- W382 <-- W359 <-- W306). Here we reinvestigate the W306F mutant photolyase by transient absorption spectroscopy. We demonstrate that electron transfer does occur upon excitation of FADH degrees and leads to the formation of FADH- and a deprotonated tryptophanyl radical, most likely W359 degrees. These photoproducts are formed in less than 10 ns and recombine to the dark state in approximately 1 micros. These results support the electron hopping mechanism.  相似文献   

18.
A single amino acid mutation (W321F) in Mycobacterium tuberculosis catalase-peroxidase (KatG) was constructed by site-directed mutagenesis. The purified mutant enzyme was characterized using optical and electron paramagnetic resonance spectroscopy, and optical stopped-flow spectrophotometry. Reaction of KatG(W321F) with 3-chloroperoxybenzoic acid, peroxyacetic acid, or t-butylhydroperoxide showed formation of an unstable intermediate assigned as Compound I (oxyferryl iron:porphyrin pi-cation radical) by similarity to wild-type KatG, although second-order rate constants were significantly lower in the mutant for each peroxide tested. No evidence for Compound II was detected during the spontaneous or substrate-accelerated decay of Compound I. The binding of isoniazid, a first-line anti-tuberculosis pro-drug activated by catalase-peroxidase, was noncooperative and threefold weaker in KatG(W321F) compared with wild-type enzyme. An EPR signal assigned to a protein-based radical tentatively assigned as tyrosyl radical in wild-type KatG, was also observed in the mutant upon reaction of the resting enzyme with alkyl peroxide. These results show that mutation of residue W321 in KatG does not lead to a major alteration in the identity of intermediates formed in the catalytic cycle of the enzyme in the time regimes examined here, and show that this residue is not the site of stabilization of a radical as might be expected based on homology to yeast cytochrome c peroxidase. Furthermore, W321 is indicated to be important in KatG for substrate binding and subunit interactions within the dimer, providing insights into the origin of isoniazid resistance in clinically isolated KatG mutants.  相似文献   

19.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

20.
The reaction of dioxygen with the ferrous forms of the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was studied by photolysis of the respective ferrous-CO complexes in the presence of dioxygen. Reaction of ferrous CCP(MI) with dioxygen transiently formed a FeII-O2 complex (bimolecular rate constant = (3.8 +/- 0.3) x 10(4) M-1 s-1 at pH 6.0; 23 degrees C) that reacted further (first-order rate constant = 4 +/- 1 s-1) to form a product with an absorption spectrum and an EPR radical signal at g = 2.00 that were identical to those of compound I formed by the reaction of CCP(MI)III with peroxide. Thus, the product of the reaction of CCP(MI)II with dioxygen retained three of the four oxidizing equivalents of dioxygen. Gel electrophoresis of the CCP(MI)II + dioxygen reaction products showed that covalent dimeric and trimeric forms of CCP(MI) were produced by the reaction of CCP(MI)II with dioxygen. Photolysis of the CCP(MI)II-CO complex in the presence of ferrous cytochrome c prevented the appearance of the cross-linked forms and resulted in the oxidation of 3 mol of cytochrome c/mol of CCP(MI)II-CO added. The results provide evidence that reaction of CCP(MI)II with dioxygen causes transient oxidation of the enzyme by 1 equiv above the normal compound I oxidation state. Mutations that eliminate the broad EPR signal at g = 2.00 characteristic of the compound I radical also prevented the rapid oxidation of the ferrous enzyme by dioxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号