首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As revealed in experiments on V. cholerae, highly diluted cholera antiserum enhanced the inhibitory action of the enzymatic link xanthine oxidase-xanthine-Fe2+ on the multiplication of V. cholerae, while low dilutions of the antiserum weakened this action. Normal rabbit serum produced no such effect. The antivibrionic effectiveness of the immune molecular cycle, viz. antiserum--the xanthine oxidase enzymatic link, was found to depend also on the concentration of xanthine. Immune antibodies to cholera antigens activated the bacteriostatic action of the enzymatic link at the concentration of xanthine oxidase equal to 0.0125 g/l and its bactericidal action at the concentration of xanthine oxidase equal to 0.025 g/l. In this article the values of the specificity indices of immune interaction and immunological effectiveness, characterizing the effectiveness of immune molecular cycles (antibodies--the xanthine oxidase enzymatic link), are presented.  相似文献   

2.
It is believed that the correlate of protection for cholera can be determined by the serum vibriocidal assay. The currently available vibriocidal assays, based on the conventional agar plating technique, are labor intensive. We developed a simple and convenient microtiter plate assay for the detection of vibriocidal antibodies that is equally as efficient for Vibrio cholerae O1 and for V. cholerae O139. The addition of succinate and neotetrazolium made it possible to measure the growth of surviving bacterial target cells by monitoring a color change. We evaluated assay parameters (target strains, growth of target cells, complement source and concentration) that may affect the reproducibility of the method for V. cholerae O139. The results obtained with the microtiter plate assay were uniformly similar to those obtained with the conventional agar plating assay, when testing both the Inaba and Ogawa serotypes of V. cholerae O1. The microtiter plate assay was also convenient for measuring the activity of animal sera and mouse monoclonal antibodies.  相似文献   

3.
Hyperthermia is under intensive investigation as a treatment for tumors both alone and in combination with other therapeutic agents. Hyperthermia has a profound effect on the function and structural integrity of tumor microvasculature; this has often been cited as a reason for its effectiveness in treatment of tumors. To test the role of hyperthermia in cytotoxic effects of active oxygen species, Chinese hamster, V79, and bovine endothelial cells were treated by the active oxygens, O not equal to 2 and H2O2, generated from the hypoxanthine/purine and xanthine oxidase reactions. It was found that cytotoxicity to V79 cells depends on the concentrations of purine and xanthine oxidase. A high level of cytotoxicity may be initiated in hyperthermia-treated tumors because high xanthine oxidase activity is known to be associated with tumors and endothelial cells, and degradation processes produce high concentrations of xanthine oxidase substrates in tumors. Since the cytotoxic effect can be reduced by the xanthine oxidase inhibitor, allopurinol, and the H2O2 removal enzyme, catalase, the cytotoxic effect in this experimental system is dependent on xanthine oxidase and H2O2. Adding erythrocytes at the same time as purine and xanthine oxidase could also prevent the cytotoxicity. Elevated temperatures stimulated the reaction of purine and xanthine oxidase and resulted in an increased cytotoxic effect. A similar effect is observed in growth inhibition and colony formation in endothelial cells without adding xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreductase activity in cultured V79 cells was increased with exposure to ferric ammonium sulfate and inhibited by deferoxamine. Lung XO and total xanthine oxidoreductase activities were reduced in rats fed an iron-depleted diet and increased in rats supplemented with iron, without change in the ratio of XO to total oxidoreductase. Intratracheal injection of an iron salt or silica-iron, but not aluminum salts or silica-zinc, significantly increased rat lung XO and total xanthine oxidoreductase activities, immunoreactive xanthine oxidoreductase, and the concentration of urate in bronchoalveolar fluid. These results suggest the possibility that the production of uric acid, a major chelator of iron in extracellular fluid, is directly influenced by iron-mediated regulation of the expression and/or activity of its enzymatic source, xanthine oxidase.  相似文献   

5.
Single serum samples from 559 volunteers from a Texas Gulf Coast area were examined for vibriocidal antibody to Vibrio cholerae O1 (biotype El Tor, serotype Inaba) by a microtiter method. Elevated levels of vibriocidal antibody were present in 14% of the subjects. Also, 6.8% of the subjects had elevated levels of antibody to the enterotoxin of V. cholerae O1 by the immunoglobulin G enzyme-linked immunosorbent assay. Recent infection, defined on the basis of elevations in both vibriocidal and antitoxin antibodies, had occurred in 1.3% of the subjects. When subjects who reported Brucella infection, travel to a cholera-endemic area, and/or cholera vaccination within a year of the study were removed from the analysis, a prevalence of recent infection of 0.89% was obtained. Significantly higher titers of vibriocidal antibody were found in those with exposure to seawater (fishermen, shrimpers, merchant marines, and dock workers) than in those without such exposure (P less than 0.005). Furthermore, titers of antitoxin antibody were significantly higher in those who consumed shellfish than in nonconsumers. Finally, titers of vibriocidal antibody were significantly higher in Vietnamese subjects than in non-Vietnamese subjects. The results of this study indicate that an endemic focus of infection with V. cholerae occurs in this area.  相似文献   

6.
Single serum samples from 559 volunteers from a Texas Gulf Coast area were examined for vibriocidal antibody to Vibrio cholerae O1 (biotype El Tor, serotype Inaba) by a microtiter method. Elevated levels of vibriocidal antibody were present in 14% of the subjects. Also, 6.8% of the subjects had elevated levels of antibody to the enterotoxin of V. cholerae O1 by the immunoglobulin G enzyme-linked immunosorbent assay. Recent infection, defined on the basis of elevations in both vibriocidal and antitoxin antibodies, had occurred in 1.3% of the subjects. When subjects who reported Brucella infection, travel to a cholera-endemic area, and/or cholera vaccination within a year of the study were removed from the analysis, a prevalence of recent infection of 0.89% was obtained. Significantly higher titers of vibriocidal antibody were found in those with exposure to seawater (fishermen, shrimpers, merchant marines, and dock workers) than in those without such exposure (P less than 0.005). Furthermore, titers of antitoxin antibody were significantly higher in those who consumed shellfish than in nonconsumers. Finally, titers of vibriocidal antibody were significantly higher in Vietnamese subjects than in non-Vietnamese subjects. The results of this study indicate that an endemic focus of infection with V. cholerae occurs in this area.  相似文献   

7.
The mechanism of vitamin C-induced sister-chromatid exchanges in cultured mammalian cells was studied. Chinese hamster ovary cells, when exposed to an enzymatic oxygen radical-generating system (xanthine oxidase plus hypoxanthine), develop increased numbers of sister-chromatid exchanges. Inclusion of ascorbate (greater than or equal to 0.1 mM) in these incubations resulted in an augmentation of this effect. Superoxide dismutase (100 microliter/ml) and catalase (220 microliter/ml) caused a significant reduction in the number of sister-chromatid exchanges induced by xanthine oxidase, hypoxanthine and vitamin C. Their heat-inactivated counterparts had no effect. These results confirm that vitamin C (greater than or equal to 0.1 mM) potentiates the genetic toxicity of oxygen radicals and that this effect is mediated by toxic oxygen intermediates.  相似文献   

8.
目的研究探索O139霍乱弧菌杀弧菌抗体的检测方法。方法用微孔板培养和琼脂平板克隆计数相结合的杀弧菌抗体检测方法,对实验菌株及稀释度、补体浓度等关键参数进行筛选;对50份小鼠免疫血清进行杀弧菌抗体滴度检测,并与O139群霍乱弧菌LPS Ig G抗体滴度进行相关分析;对该方法的特异性、线性和精密性进行了验证。结果筛选出最佳菌株为20100603菌株,最佳稀释度倍数为2 000倍,补体最佳稀释倍数为16倍。O139群霍乱弧菌小鼠免疫血清检测到较高的杀弧菌抗体滴度而PBS小鼠免疫血清未检测到杀弧菌抗体滴度。小鼠免疫血清杀弧菌抗体滴度与O139群霍乱弧菌LPS Ig G抗体滴度之间存在正相关关系。验证结果显示,在抑制剂浓度达到1.0~2.0 A600时,抑制率100%;线性回归方程为y=-1.093x+5.058,其相关系数为-0.999,P0.05;方法批内CV值为15.72%,批间CV值为23.47%。结论初步建立了O139霍乱弧菌杀弧菌抗体的检测方法,该方法具有较高的特异性、线性和精密度。  相似文献   

9.
Xanthine oxidase catalyzed mutagenicity of 4-nitrobiphenyl (NBP), a dog-bladder carcinogen, was tested in Ames assay using Salmonella typhimurium TA98 strains. NBP was active as a mutagen in the parent strain TA98 which is proficient in nitroreductase, while it was inactive in the strain TA98NR which is deficient in nitroreductase. However, preincubation of NBP at 37 degrees C with NADH and commercial preparations of xanthine oxidase for 30 min resulted in a dose-dependent increase in the mutagenic activity in TA98NR. Allopurinol blocked the xanthine oxidase catalyzed mutagenicity of NBP in TA98NR and the extent of inhibition was dependent upon the concentration of the inhibitor. Rat-liver and dog-bladder cytosol preparations also enhanced the mutagenic activity of NBP in TA98NR in a dose-dependent manner. In addition, the cytosol-mediated activity was also inhibited by allopurinol, implying that the cytosolic enzyme activity might be due to xanthine oxidase. In vitro enzymatic reduction of NBP using bacterial cell lysates of TA98 and TA98NR revealed the major product of reduction to be 4-aminobiphenyl. The transient intermediates of reduction were not detected during the in vitro incubation. The reduction intermediate N-hydroxylaminobiphenyl showed direct and equal mutagenic activity in both TA98 and TA98NR, in contrast to NBP. These results suggest that N-hydroxylaminobiphenyl is generated during the preincubation of NBP with xanthine oxidase or cytosolic preparations and the former might account for the mutagenicity of NBP. Furthermore, the occurrence of such enzyme(s) in the target tissue for NBP carcinogenesis, support the hypothesis that metabolic activation of the bladder carcinogen NBP could occur within the target organ by virtue of its intrinsic metabolic potential.  相似文献   

10.
The effect and possible mechanism of action of vanadate on the isolated pulmonary arterial rings of normal rats were studied. Pulmonary arterial rings contracted in response to vanadate (0.1-1 mM) in a concentration-dependent manner. Preincubation of the pulmonary arterial rings with 1 mM melatonin significantly reduced the contractile effect of vanadate by more than 60%. Furthermore, addition of hydrogen peroxide (50 microM) or enzymatic generation of hydrogen peroxide by the addition of glucose oxidase (10 U/mL) to the medium containing glucose produced remarkable increases in the pulmonary arterial tension, 46.2 +/- 7.3 and 78.7 +/- 9.7 g tension/g tissue, respectively. Similarly, incubation of the pulmonary arterial rings with 1 mM melatonin significantly reduced the contractile responses of the arterial rings to hydrogen peroxide and glucose/glucose oxidase to 25.7 +/- 2.9 and 24.7 +/- 4.4 g tension/g tissue, respectively. Vanadate, in vitro, significantly stimulated the oxidation of NADH by xanthine oxidase, and the rate of oxidation was increased by increasing either time or vanadate concentration. Similarly, addition of melatonin to a reaction mixture containing xanthine oxidase and vanadate significantly inhibited the rate of NADH oxidation in a concentration-dependent fashion. The results of the present study indicated that vanadate induced contraction in the isolated pulmonary arterial rings, which was significantly reduced by melatonin. Furthermore, the contractile effect of vanadate on the pulmonary arterial rings may be attributed to the intracellular generation of hydrogen peroxide.  相似文献   

11.
The effects of hypoxia and reoxygenation on the conversion of xanthine dehydrogenase to the free radical-producing xanthine oxidase in Chinese hamster V79 cells have been investigated using a newly developed fluorimetric enzyme assay. Hypoxia caused an increase in xanthine oxidase activity from 25% to 80% of the total activity of xanthine oxidase and dehydrogenase. The ratio returned to normal levels within 24 h of aerobic incubation. Hypoxia caused the release of xanthine oxidase in the medium of V79 cells and an increase in total protein concentration in the medium. There was an early change induced in lipid peroxidation markers and this was inhibited by allopurinol. The effects of glucose deprivation and calcium blockers were also investigated. Fura-2 AM was found to interact with V79 cells, making it impossible to determine intracellular calcium levels in V79 cells by this reagent.  相似文献   

12.
A method to purify bovine liver xanthine oxidase in described, with which samples of 256-fold specific activity with respect to the initial homogenate are obtained. Bovine liver xanthine oxidase and chicken liver xanthine dehydrogenase with oxygen as electron acceptor exhibit similar profile in pKM and log V versus pH plots. With NAD+ as electron acceptor a different profile in the pKM xanthine plot is obtained for chicken liver xanthine dehydrogenase. However three inflection points at the same pH values appear in all plots. Both enzymes are irreversibly inhibited by pCMB and reversibly by N-ethylmaleimide and by iodoacetamide, with competitive and uncompetitive type inhibitions respectively. These results suggest that NAD+ alters the enzymatic action since its binding to the enzyme antecedes the binding of xanthine to the xanthine oxidase molecule, without undergoing itself any modification. 0.15 M DDT of DTE treatment of bovine liver xanthine oxidase gives to the enzyme a permanent activity with NAD+ without modifying its activity with oxygen. The enzyme thus treated produces parallel straight lines in Lineweaver-Burk plots.  相似文献   

13.
The antivibrionic activity of crystalline preparations of five enzymes of the glycolytic cycle of animals cells was investigated. Phosphorylase "a" (0.5 mg/ml), aldolase (15 mg/ml) and pyruvate kinase (0.1 mg/ml) were found to inhibit the proliferation of Vibrio cholerae cells; phosphoglucomutase and glyceraldehyde-3-phosphate dehydrogenase at a concentration of 0.25 mg/ml were found to be vibriocidal. A mixture of these enzymes containing 0.062 mg/ml of phosphorylase "a" and 0.125 mg/ml of each phosphoglucomutase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase showed vibriocidal activity.  相似文献   

14.
The present studies were undertaken to determine the effects of reactive oxygen metabolites on erythropoietin (Ep) biosynthesis in Ep-producing renal carcinoma (RC) cells using a sensitive radioimmunoassay for Ep. Xanthine (10-5M) and increasing concentrations of xanthine oxidase (8 x 10(-7) to 5 x 10(-4) units/ml) produced a significant dose-related increase in Ep production at a concentration of greater than or equal to 4 x 10(-6) units/ml, whereas xanthine alone had no effect. Catalase, a scavenger of hydrogen peroxide (H2O2), in concentrations of 50 to 500 micrograms/ml produced a significant inhibition of the increase in Ep production induced by xanthine-xanthine oxidase; while no effect was seen on basal levels of Ep production and the growth of RC cells. Glucose oxidase (greater than or equal to 0.032 mU/ml), a direct H2O2 generator, and exogenous H2O2 (greater than or equal to 4 x 10(-6)M) added to the incubation mixture, caused a significant enhancement of Ep production in a dose-dependent manner. Xanthine-xanthine oxidase, glucose oxidase, and H2O2 in the above concentrations did not produce significant cytotoxicity (51Cr release or trypan blue dye exclusion). The present data suggests that H2O2, a reactive oxygen metabolite may play a significant role in Ep production.  相似文献   

15.
Glucose oxidase, horseradish peroxidase, xanthine oxidase, and carbonic anhydrase have been adsorbed to colloidal gold sols with good retention of enzymatic activity. Adsorption of xanthine oxidase on colloidal gold did not result in a change in enzymatic activity as determined by active site titration with the stoichiometric inhibitor pterin aldehyde and by measurement of the apparent Michaelis constant (K'(M)). Gold sols with adsorbed glucose oxidase, horseradish peroxidase, and xanthine oxidase have also been electrodeposited onto conducting matrices (platinum gauze and/or glassy carbon) to make enzyme electrodes. These electrodes retained enzymatic activity and, more importantly, gave an electrochemical response to the enzyme substrate in the presence of an appropriate electron transfer mediator. Our results demonstrate the utility of colloidal gold as a biocompatible enzyme imobilization matrix suitable for the fabrication of enzyme electrodes. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
Experiments in vivo and in vitro on 90 rats were made to study the influence of 1,4-benzodiazepine tranquilizers (phenazepam, nitrazepam and diazepam) on cerebral xanthine oxidase activity. Phenazepam, nitrazepam and diazepam in the dose of 5 mg per 200 g bw were shown to reduce xanthine oxidase activity by 80.4%, 64.3% and 55.8%, respectively 2 h after intraperitoneal injection. 6 h after the injection of benzodiazepines the enzyme activity grows, but control values are achieved only after nitrazepam injection. In vitro experiments revealed direct influence of the tranquilizers on xanthine oxidase. Phenazepam inhibits xanthine oxidase activity in concentration as long as 10(-10) M (to 36.6%), and practically completely in 10(-6) M concentration. Nitrazepam and diazepam inhibit xanthine oxidase activity within concentration range between 10(-8) M (to 51.5% and 33.2%, respectively), and 10(-4) M (practically completely). The inhibition of xanthine oxidase activity is shown to be caused by the competition between hypoxanthine, the reaction substrate, and tranquilizer, to bind with the active site of the enzyme.  相似文献   

17.
To determine the role of xanthine oxidase in the microvascular dysfunction produced by activated granulocytes, we examined the effect of xanthine oxidase depletion or inhibition on the increase in microvascular permeability produced by infusion of the neutrophil activator phorbol myristate acetate (PMA). Changes in vascular permeability were assessed by measurement of the solvent drag reflection coefficient for total plasma proteins (sigma) in rat hindquarters subjected to PMA infusion in xanthine oxidase-replete and -depleted animals, in animals pretreated with the xanthine oxidase inhibitor oxypurinol, and in animals depleted of circulating neutrophils by pretreatment with antineutrophil serum (ANS). Xanthine oxidase depletion was accomplished by administration of a tungsten-supplemented (0.7 g/kg diet) molybdenum-deficient diet. In animals fed the tungsten diet, muscle total xanthine dehydrogenase plus xanthine oxidase activity was decreased to less than 10% of control values. Estimates of sigma averaged 0.84 +/- 0.04 in control hindquarters, whereas PMA infusion was associated with a marked increase in microvascular permeability (decrease in sigma to 0.68 +/- 0.03). PMA infusion also caused an increase in the amount of the radical-producing oxidase form of xanthine oxidase (from 3.9 +/- 0.05 to 5.6 +/- 0.4 mU/g wet wt). ANS pretreatment attenuated this permeability increase (sigma = 0.77 +/- 0.04) and diminished the rise in xanthine oxidase activity (4.9 +/- 0.5 mU/g wet wt). Xanthine oxidase depletion with the tungsten diet or pretreatment with oxypurinol had no effect on this neutrophil-mediated microvascular injury (sigma = 0.69 +/- 0.06 and 0.67 +/- 0.03, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of isotopic substitution of the 8-H of xanthine (with 2H and 3H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T(V/K) values was observed between xanthine oxidase (3.59 +/- 0.1) and xanthine dehydrogenase (3.60 +/- 0.09). Xanthine dehydrogenase exhibited a larger T/D(V/K) value (0.616 +/- 0.028) than that observed for xanthine oxidase (0.551 +/- 0.016). Observed H/T(V/K) values for either enzyme are less than those H/T(V/K) values calculated with D/T(V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8-3H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (Cr) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect (Dk) for xanthine oxidation is calculated to be 7.4 +/- 0.7 for xanthine oxidase and 4.2 +/- 0.2 for xanthine dehydrogenase. By use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be approximately 75-fold faster than kcat for xanthine oxidase and approximately 10-fold faster than kcat for xanthine dehydrogenase. This calculated rate is consistent with data obtained by rapid-quench experiments with XO. A stoichiometry of 1.0 +/- 0.3 mol of uric acid/mol of functional enzyme is formed within the mixing time of the instrument (5-10 ms). The kinetic isotope effect data also permitted the calculation of the Kd values [Klinman, J. P., & Mathews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] for substrate dissociation, including all reversible steps prior to C-H bond cleavage. Values calculated for each enzyme (Kd = 120 microM) were found to be identical within experimental uncertainty.  相似文献   

19.
《Free radical research》2013,47(3-6):367-374
The hypoxanthine — xanthine oxidase system generates an extracellular flux of superoxide anion radical (O2?) and hydrogen peroxide (H2O2). Catalase but not superoxide dismutase (SOD) protects V79 cells exposed to the hypoxanthine — xanthine oxidase system, showing that H2O2 is the major reactive oxygen species involved in the cytotoxicity of such a system. In contrast to SOD, the lipophilic SOD like compound CuII (diisopropylsalicylate)2 (CuDIPS) exhibits some protection at non cytotoxic concentration. It is also found that methanol partially protects cells exposed to the hypoxanthine-xanthine oxidase system. It appears that in our experimental conditions (temperature, ionic strength and pH) the protective effect afforded by methanol and CuDIPS is due to the inhibition of the xanthine oxidase activity.  相似文献   

20.
Vanadate (V(V)) stimulates the oxidation of NADH by xanthine oxidase and superoxide dismutase eliminates the effect of V(V). Paraquat stimulates both the oxidation of NADH by xanthine oxidase and the V(V) enhancement of that oxidation. Xanthine, which is a better substrate for xanthine oxidase than is NADH, causes a V(V)-dependent co-oxidation of NADH which is transient and eliminated by SOD. Urate inhibits the V(V)-stimulated oxidation of NADH by xanthine oxidase or by Rose Bengal plus light. Measurement of rates of both O2- production and V(V)-stimulated NADH oxidation showed that many molecules of NADH were oxidized per O2-. These chain lengths were an inverse function of overall reaction rate. Minimum chain lengths, calculated on the basis of 100% univalent reduction of O2 to O2-, were smaller than measured average chain lengths by a factor of five. All of these results are in accord with the view that V(V) does not directly affect the activity of the enzyme, but rather catalyzes the free radical chain oxidation of NADH by O2-. It was further shown that phosphate was not involved and that the active form of V(V) was orthovanadate, rather than decavanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号