首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A partially agonistic monoclonal antibody, 4D5, known to bind to the extracellular domain of p185HER2 and shown to inhibit long term growth of p185HER2-overexpressing breast cancer cells, was used to study signal transduction and phosphotyrosyl protein substrates associated with this receptor. Normal breast epithelial cells and breast carcinoma cells expressing low levels of p185HER2 were not affected by 4D5. HER2/neu-overexpressing breast cancer cells (BT-474 and SK-Br-3) exposed to 4D5 exhibited rapid phosphorylation of both p185HER2 and an associated 56-kDa phosphotyrosyl protein (ptyr56). Paralleling the 4D5- stimulated phosphorylation of p185HER2 and ptyr56 was a 5-10-fold induction of c-fos mRNA and phosphatidylinositol 4-kinase activity and a 2-fold induction of inositol 1,4,5-trisphosphate 3'-kinase activity. The increased phosphatidylinositol 4-kinase activity immunoprecipitated with p185HER2 and also co-eluted with ptyr56 from an antiphosphotyrosine immunoaffinity column. These results indicate that short term (less than 6 h) 4D5 activation of p185HER2 in overexpressing breast cancer cells produces agonistic-like signaling typical of homologous tyrosine kinase growth factor receptors such as epidermal growth factor receptor. The data also suggest that ptyr56 represents a novel phosphorylated substrate associated with 4D5-stimulated p185HER2.  相似文献   

3.
To elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215.  相似文献   

4.
SH2 domain proteins are important components of the signal transduction pathways activated by growth factor receptor tyrosine kinases. We have been cloning SH2 domain proteins by bacterial expression cloning using the tyrosine phosphorylated C-terminus of the epidermal growth factor receptor as a probe. One of these newly cloned SH2 domain proteins, GRB-7, was mapped on mouse chromosome 11 to a region which also contains the tyrosine kinase receptor, HER2/erbB-2. The analogous chromosomal locus in man is often amplified in human breast cancer leading to overexpression of HER2. We find that GRB-7 is amplified in concert with HER2 in several breast cancer cell lines and that GRB-7 is overexpressed in both cell lines and breast tumors. GRB-7, through its SH2 domain, binds tightly to HER2 such that a large fraction of the tyrosine phosphorylated HER2 in SKBR-3 cells is bound to GRB-7. GRB-7 can also bind tyrosine phosphorylated SHC, albeit at a lower affinity than GRB2 binds SHC. We also find that GRB-7 has a strong similarity over > 300 amino acids to a newly identified gene in Caenorhabditis elegans. This region of similarity, which lies outside the SH2 domain, also contains a pleckstrin homology domain. The presence of evolutionarily conserved domains indicates that GRB-7 is likely to perform a basic signaling function. The fact that GRB-7 and HER2 are both overexpressed and bound tightly together suggests that this basic signaling pathway is greatly amplified in certain breast cancers.  相似文献   

5.
The estrogen receptor (ER) pathway and the epidermal growth factor receptor (EGFR) pathway play pivotal roles in breast cancer progression. Targeted therapies able to intercept ER or signaling downstream to EGFR and its kin, HER2, are routinely used to treat distinct groups of breast cancer patients. However, patient responses are limited by resistance to endocrine therapy, which may be due to compensatory HER2/EGFR signaling. This raises the possibility that simultaneous interception of HER2 and ER may enhance therapeutic efficacy. To address the question, we treated breast cancer cells with both fulvestrant (ICI 182780), an ER antagonist with no agonist effects, and lapatinib, an orally available tyrosine kinase inhibitor specific to EGFR and HER2. Our results indicate that the combination of drugs is especially effective when applied to HER2-overexpressing, ER-positive cancer cells. Interestingly, fulvestrant activated the mitogen-activated protein kinase (MAPK) pathway of these cells, but complete inhibition of MAPK signaling was observed on cotreatment with lapatinib. Taken together, our observations reinforce the possibility that the effectiveness of combining anti-ER and anti-HER2/EGFR drugs may be especially effective on a relatively small subtype of HER2-overexpressing, ER-positive tumors of the breast.  相似文献   

6.
To determine whether p185HER2 overexpression per se triggers p185HER2 cellular signaling or whether an extracellular signal is required, we transfected PC12 cells with the human erbB-2 proto-oncogene, and established a cell line that overexpresses p185HER2. PC12-HER2 cells, maintained in suspension culture or plated on a collagen layer, showed the same morphology and growth rate as PC12 and PC12 mock-transfected control cells. When treated with monoclonal antibody (MAb) MGr6 or other anti-p185HER2 MAbs, PC12–HER2 cells specifically underwent neuronal differentiation comparable to that induced by nerve growth factor (NGF), and the differentiation-inducing effect of the MAb was dramatically enhanced by the addition of a second anti-mouse IgG. MAb-induced cell differentiation correlated with p185HER2 phosphorylation, recruitment of Shc and Grb-2 transducer molecules into complexes, and MAPK phosphorylation. These data indicate the requirement for a specific binding-induced activation of the overexpressed p185HER2 receptor in inducing PC12 cell differentiation. PC12-HER2 cells represent a suitable system for selection of p185HER2-activating ligands (peptides, phage-displayed peptides or proteins) or specific inhibitors of its tyrosine kinase activity. J. Cell. Biochem. 67:316–326, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   

9.
The HER2/neu gene encodes a receptor tyrosine kinase that is highly homologous to the epidermal growth factor receptor. Overexpression of the receptor in mammary and ovarian carcinoma correlates with poor patient prognosis. To determine how the overexpression of a normal receptor leads to the generation of an oncogenic signal, we compared the patterns of tyrosine phosphorylation in tumor-derived human cell lines expressing high levels of p185HER2/neu. In intact SKBR3 cells, basal phosphorylation of p185HER2/neu was not detected. However, pretreatment of cells with the tyrosine phosphatase inhibitor, sodium orthovanadate, led to the detection of phosphotyrosine on phospholipase C-gamma (PLC-gamma), GTPase-activating protein but not on the RAF-1 kinase. Strikingly, PLC-gamma was detected in a complex which contained multiple tyrosine-phosphorylated polypeptides. This complex was detected only in cytoplasmic fractions and had a distinct composition in different p185HER2/neu-overexpressing cell lines. Although GTPase-activating protein has been found previously in association with proteins of 190 and 62 kDa in fibroblasts, in SKBR3 cells it was found associated with multiple additional tyrosine-phosphorylated polypeptides. These experiments show that SKBR3 cells possess high levels of protein tyrosine phosphatase that can act upon p185HER2/neu. Moreover, they reveal, for the first time, the presence of PLC-gamma and GTPase-activating protein in cytosolic complexes containing a variety of other tyrosine-phosphorylated polypeptides. These observations suggest novel possibilities for the specific definition of receptor-generated signals in tumor cells.  相似文献   

10.
Human epidermal growth factor receptor 2 (HER2) belongs to the EGFR family of receptor tyrosine kinases that comprises four members. As opposed to the other family members, HER2 does not require ligand binding for activation. Hence, HER2 molecules can undergo spontaneous dimerization, autophosphorylation and activation of downstream signaling pathways especially under conditions of overexpression, a commonly encountered phenomenon in breast cancer. In this study, we sought to investigate the mechanism by which HER2 musters signaling and transformation potency. We show that HER2 overexpression per se induces a significant increase in basal mitogenic and cell survival signaling, which was augmented by EGF stimulation. Inhibition of the normally expressed EGFR significantly suppressed the ability of overexpressed HER2 to induce enhanced signaling and cell transformation, suggesting that HER2 requires the EGFR and potentially other members to maximize its signaling and transformation potency. The novel observation revealed by prolonged EGF stimulation studies was the biphasic signaling pattern in the presence of HER2 overexpression that suggested the induction of a short-circuited mechanism, permitting sustained signaling. Our results further show that the short-circuited signaling was due to the re-shuttling of internalized receptor molecules to the Rab11-positive recycling endosomes, while suppressing channeling to the LAMP1-positive lysosome-targeting endosomes. Therefore, HER2's oncogenicity is dependent, not only on its constitutively active nature, but also on its ability to muster collaborative signaling from family members through modulation of ligand-induced receptor regulation.  相似文献   

11.
Overexpression of the receptor tyrosine kinases HER2 and HER3 is associated with a poor prognosis in several types of cancer. Presently, HER2- as well as HER3-targeted therapies are in clinical practice or evaluated within clinical trials, including treatment with mAbs mediating growth inhibition and/or activation of Ab-induced innate or adaptive cellular immunity. A better understanding of how HER2/HER3 signaling in tumors influences cellular immune mechanisms is therefore warranted. In this study, we demonstrate that HER2/HER3 signaling regulates the expression of MHC class I-related chain A and B (MICA and MICB) in breast cancer cell lines. The MICA and MICB (MICA/B) molecules act as key ligands for the activating receptor NK group 2, member D (NKG2D) and promote NK cell-mediated recognition and cytolysis. Genetic silencing of HER3 but not HER2 downregulated the expression of MICA/B, and HER3 overexpression significantly enhanced MICA expression. Among the major pathways activated by HER2/HER3 signaling, the PI3K/AKT pathway was shown to predominantly regulate MICA/B expression. Treatment with the HER3-specific ligand neuregulin 1β promoted the expression in a process that was antagonized by pharmacological and genetic interference with HER3 but not by the ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related protein kinases inhibitor caffeine. These observations further emphasize that HER2/HER3 signaling directly, and not via genotoxic stress, regulates MICA/B expression. As anticipated, stimulating HER2/HER3 enhanced the NKG2D-MICA/B-dependent NK cell-mediated cytotoxicity. Taken together, we conclude that signaling via the HER2/HER3 pathway in breast carcinoma cell lines may lead to enhanced NKG2D-MICA/B recognition by NK cells and T cells.  相似文献   

12.
Growth factor receptors such as the epidermal growth factor receptor (EGFR) and the p185c-neu protein serve vital roles in the transduction of differentiation, developmental, or mitogenic signaling within normal cells. Two methods of analysis suggest that the inappropriately high expression of either protein tyrosine kinase promotes malignant transformation. First, data from in vitro experiments indicate that overexpression of either EGFR or p185c-neu (or the human homolog c-erbB-2) transforms cell-lines. Second, analysis of primary tumors and tumor cell-lines derived from many epithelial tissues (breast, stomach, ovary, and pancreas) show growth factor receptor gene amplification and elevated protein levels. The physical and functional interaction of p185c-neu and EGFR leads to the formation of a highly active, heterodimeric tyrosine kinase complex which synergistically activates cellular transformation. Anti-receptor antibodies have shown potential utility for the down modulation of these cell-surface proteins and suppression of the malignant phenotype. Design of organic antibody “mimetics” based on the structure of antireceptor antibodies may provide useful therapies and biological reagents to affect growth factor receptor function.  相似文献   

13.
The neu proto-oncogene product has been found to exist in two interconvertible forms in G8/DHFR mouse fibroblasts. The 185-kilodalton form (p185) present in growing cells is replaced by a 175-kilodalton form (p175) under conditions of serum starvation. This low molecular weight form accounts almost exclusively for the phosphotyrosine content of the receptor and is associated with increased tyrosine kinase activity. Addition of serum, platelet-derived growth factor or tumor promoter induces conversion of p175 to p185 within minutes, and this increase in molecular weight is associated with phosphorylation of serine and threonine; removal of serum growth factors is followed by replacement of p185 with p175 over several hours. Unlike G8/DHFR cells, the human breast cancer cell line SK-Br-3 expresses a high molecular weight neu/HER2 receptor with unchanged phosphotyrosine content in both serum-starved and serum-stimulated cultures. These findings indicate that activation of the neu proto-oncogene product in G8/DHFR cells may be regulated in part by protein kinase C-mediated receptor transmodulation rather than by ligand availability alone.  相似文献   

14.
The HER2 protooncogene encodes a receptor tyrosine kinase, p185HER2. The overexpression of p185HER2 has been associated with a worsened prognosis in certain human cancers. In the present work we have screened a variety of different tumor cell lines for p185HER2 expression using both enzyme-linked immunosorbent and fluorescence-activated cell sorting assays employing murine monoclonal antibodies directed against the extracellular domain of the receptor. Increased levels of p185HER2 were found in breast (5/9), ovarian (1/6), stomach (2/3) and colorectal (5/16) carcinomas, whereas all kidney and submaxillary adenocarcinoma cell lines tested were negative. Some monoclonal antibodies directed against the extracellular domain of p185HER2 inhibited growth in monolayer culture of breast and ovarian tumor cell lines overexpressing p185HER2, but had no effect on the growth of colon or gastric adenocarcinomas expressing increased levels of this receptor. The most potent growth-inhibitory anti-p185HER2 monoclonal antibody in monolayer culture, designated mumAb 4D5 (a murine IgG1 antibody), was also tested in soft-agar growth assays for activity against p185HER2-overexpressing tumor cell lines of each type, with similar results. In order to increase the spectrum of tumor types potentially susceptible to monoclonal antibody-mediated anti-p185HER2 therapies, to decrease potential immunogenicity issues with the use of murine monoclonal antibodies for human therapy, and to provide the potential for antibody-mediated cytotoxic activity, a mouse/human chimeric 4D5 (chmAb 4D5) and a humanized 4D5 (rhu)mAb 4D5 HER2 antibody were constructed. Both engineered antibodies, in combination with human peripheral blood mononuclear cells, elicited antibody-dependent cytotoxic responses in accordance with the level of p185HER2 expression. Since this cytotoxic activity is independent of sensitivity to mumAb 4D5, the engineered monoclonal antibodies expand the potential target population for antibody-mediated therapy of human cancers characterized by the overexpression of p185HER2.  相似文献   

15.
16.
Breast cancers are stratified into distinct subtypes, which influence therapeutic responsiveness and patient outcome. Patients with luminal breast cancers are often associated with a better prognosis relative to that with other subtypes. However, subsets of patients with luminal disease remain at increased risk of cancer-related death. A critical process that increases the malignant potential of breast cancers is the epithelial-to-mesenchymal transition (EMT). The p66ShcA adaptor protein stimulates the formation of reactive oxygen species in response to stress stimuli. In this paper, we report a novel role for p66ShcA in inducing an EMT in HER2+ luminal breast cancers. p66ShcA increases the migratory properties of breast cancer cells and enhances signaling downstream of the Met receptor tyrosine kinase in these tumors. Moreover, Met activation is required for a p66ShcA-induced EMT in luminal breast cancer cells. Finally, elevated p66ShcA levels are associated with the acquisition of an EMT in primary breast cancers spanning all molecular subtypes, including luminal tumors. This is of high clinical relevance, as the luminal and HER2 subtypes together comprise 80% of all newly diagnosed breast cancers. This study identifies p66ShcA as one of the first prognostic biomarkers for the identification of more aggressive tumors with mesenchymal properties, regardless of molecular subtype.  相似文献   

17.
18.
ErbB2 (or HER2) is a receptor tyrosine kinase that is involved in signaling pathways controlling cell division, motility and apoptosis. Though important in development and cell growth homeostasis, this protein, when overexpressed, participates in triggering aggressive HER2+ breast cancers. It is composed of an extracellular part and a transmembrane domain, both important for activation by dimerization, and a cytosolic tyrosine kinase, which activates its intrinsically disordered C-terminal end (CtErbB2). Little is known about this C-terminal part of 268 residues, despite its crucial role in interacting with adaptor proteins involved in signaling. Understanding its structural and dynamic characteristics could eventually lead to the design of new interaction inhibitors, and treatments complementary to those already targeting other parts of ErbB2. Here we report backbone and side-chain assignment of CtErbB2, which, together with structural predictions, confirms its intrinsically disordered nature.  相似文献   

19.
Tek/Tie-2 is an endothelial cell (EC)-specific receptor tyrosine kinase that plays a critical role in angiogenesis via its regulation by the angiopoietin family of growth factor ligands. Angiopoietin-1 (Ang1) can promote EC migration; however, the signaling mechanisms underlying this process remain elusive. Here we demonstrate that Dok-R/Dok-2 can associate with Tek in ECs following Ang1 stimulation, resulting in tyrosine phosphorylation of Dok-R and the subsequent recruitment of Nck and the p21-activating kinase (Pak/Pak1) to the activated receptor. Ang1-mediated migration is increased upon Dok-R overexpression and this requires a functional Nck binding site on Dok-R. Localization of this Dok-R-Nck-Pak complex to the activated Tek receptor at the cellular membrane is coincident with activation of Pak kinase. The ability of Dok-R to bind Nck is required for maximal activation of Pak and overexpression of Pak results in increased Ang1-mediated cell motility. Our study outlines a novel signaling pathway underlying Ang1-driven cell migration that involves Dok-R and its recruitment of Nck and the subsequent activation of Pak.  相似文献   

20.
In the ErbB/HER family of receptor tyrosine kinases, the deregulation of the EGFR/ErbB1/HER1, HER2/ErbB2, and HER3/ErbB3 kinases is associated with several cancers, while the HER4/ErbB4 kinase has been shown to play an anti-carcinogenic role in certain tumors. We present molecular and network models of HER4/ErbB4 activation and signaling in order to elucidate molecular mechanisms of activation and rationalize the effects of the clinically identified HER4 somatic mutants. Our molecular-scale simulations identify the important role played by the interactions within the juxtamembrane region during the activation process. Our results also support the hypothesis that the HER4 mutants may heterodimerize but not activate, resulting in blockage of the HER4-STAT5 differentiation pathway, in favor of the proliferative PI3K/AKT pathway. Translating our molecular simulation results into a cellular pathway model of wild type versus mutant HER4 signaling, we are able to recapitulate the major features of the PI3K/AKT and JAK/STAT activation downstream of HER4. Our model predicts that the signaling downstream of the wild type HER4 is enriched for the JAK-STAT pathway, whereas downstream of the mutant HER4 is enriched for the PI3K/AKT pathway. HER4 mutations may hence constitute a cellular shift from a program of differentiation to that of proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号