首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultured mammalian cells, foreign DNA can be integrated into the host genome. Foreign DNA is frequently de novo methylated in specific patterns with successive cell generations. The sequence-specific methylation of promoter sequences in integrated foreign DNA is associated with the long-term inactivation of eukaryotic genes. We have now extended these experiments to studies on transgenic mice. As in previous work, a construct (pAd2E2AL-CAT) has been used which consists of the late E2A promoter of adenovirus type 2 (Ad2) DNA fused to the prokaryotic gene for chloramphenicol acetyltransferase (CAT). This construct has been integrated in the non-methylated in the 5'-CCGG-3' premethylated form in the genomes of transgenic mice. DNA from various organs was analyzed by HpaII/MspI cleavage to assess the state of methylation in 5'-CCGG-3' sequences. The results demonstrate that the transgenic construct is in general stable. Non-methylated constructs have remained partly non-methylated for four generations or can become de novo methylated at all or most 5'-CCGG-3' sequences in the founder animal. Preimposed patterns of 5'-CCGG-3' methylation have been preserved for up to four generations beyond the founder animal. In the testes of two different founder animals and two F1 males, the transgenic DNA has become demethylated by an unknown mechanism. In all other organs, the transgenic DNA preserves the preimposed 5'-CCGG-3' methylation pattern. In the experiments performed so far we have not observed differences in the transmission of methylation patterns depending on whether the transgene has been maternally or paternally inherited. The 5'-CCGG-3' premethylated transgene does not catalyze CAT activity in several organs, except in one example of the testes of an animal in which the transgenic construct has become demethylated. In contrast, when the nonmethylated construct has been integrated and remained largely non-methylated, CAT activity has been detected in extracts from some of the organs.  相似文献   

2.
In vitro replication of a dam methylated and non-methylated ori-C plasmid   总被引:12,自引:0,他引:12  
We have examined the replication of a dam methylated and non-methylated ori-C plasmid in an in vitro ori-C dependent replication system. The results show that the non-methylated plasmid is 50% to 80% less efficient in the initiation of DNA synthesis; that the methylation state of the plasmid does not change the site of initiation at ori-C, and that in both cases initiation at this region requires the presence of exogenously furnished dnaA protein.  相似文献   

3.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

4.
It is demonstrated that a heterologous (chicken) CpG island containing five Sp1 canonical recognition sequences becomes highly methylated in the genome of transgenic mice bearing one or several copies of the transgene. Similar levels of methylation of the chicken CpG island were observed in different tissues of transgenic mice except the brain where the level of methylation of this chicken CpG-rich fragment was significantly lower than in other tissues. Analysis of susceptibility of the "transgenic" CpG island to Hpa II and Msp I restriction nucleases revealed an unusual methylation pattern interfering with the action of both of these enzymes. A conclusion has been drawn that heterologous CpG island per se does not contain all necessary signals permitting to maintain its own non-methylated status in the genome of transgenic animals.  相似文献   

5.
Unmethylated CpG islands associated with genes in higher plant DNA   总被引:16,自引:0,他引:16       下载免费PDF全文
The genomes of many higher plant species are the most highly methylated among eukaryotes. We report here that in spite of their heavy methylation, genomic DNAs from four plant species contain a fraction that is very rich in non-methylated sites. The fraction was characterized in maize where it represents about 2.5% of the total nuclear genome. In order to establish the genomic origin of the fraction, three maize genes containing clustered CpG were tested for methylation and were found to be non-methylated in the CpG-rich regions. By contrast, tested CpGs were methylated in a gene whose sequence showed no clustering of CpG. These observations suggest that the CpG-rich fraction of plants is at least partially derived from non-methylated regions that are associated with genes. A similar phenomenon has been described in vertebrate genomes. We discuss the evolution of CpG islands in both groups of organisms, and their possible uses in mapping and gene isolation in plants.  相似文献   

6.
The organization of methylated rDNA repeats of radish and pea is described and it is shown that methylated repeats and non-methylated repeats are interspersed one with another. Methylated arrays are not much longer than 100 kb, or about 10 repeat units in length.  相似文献   

7.
Across vertebrate genomes methylation of cytosine residues within the context of CpG dinucleotides is a pervasive epigenetic mark that can impact gene expression and has been implicated in various developmental and disease-associated processes. Several biochemical approaches exist to profile DNA methylation, but recently an alternative approach based on profiling non-methylated CpGs was developed. This technique, called CxxC affinity purification (CAP), uses a ZF-CxxC (CxxC) domain to specifically capture DNA containing clusters of non-methylated CpGs. Here we describe a new CAP approach, called biotinylated CAP (Bio-CAP), which eliminates the requirement for specialized equipment while dramatically improving and simplifying the CxxC-based DNA affinity purification. Importantly, this approach isolates non-methylated DNA in a manner that is directly proportional to the density of non-methylated CpGs, and discriminates non-methylated CpGs from both methylated and hydroxymethylated CpGs. Unlike conventional CAP, Bio-CAP can be applied to nanogram quantities of genomic DNA and in a magnetic format is amenable to efficient parallel processing of samples. Furthermore, Bio-CAP can be applied to genome-wide profiling of non-methylated DNA with relatively small amounts of input material. Therefore, Bio-CAP is a simple and streamlined approach for characterizing regions of the non-methylated DNA, whether at specific target regions or genome wide.  相似文献   

8.
9.
 本文将克隆于pBR322的人胃癌Ha-ras基因(PGC6.6)和带有上游区片段的Ha-ras基因(PGC9.1)的CC~*GG位点甲基化后,转化NIH3T3细胞。发现pGC6.6甲基化与非甲基化对转化效率无明显影响,而pGC9.1甲基化后转化效率明显低于非甲基化pGC9.1者,甲基化/非甲基化pGC9.1的转化效率均明显高于甲基化/非甲基化pGC6.6者。本文又对人胃癌组织及癌旁组织DNA中Ha-ras基因的HpaⅡ、Msp Ⅰ限制性内切酶图谱作了比较,并同对比较了癌及癌旁组织中Ha-ras基因的mRNA水平,发现一例病人癌组织中Ha-ras基因的CC~*GG位点甲基化程度较癌旁组织中者低,且该例中Ha-ras基因表达水平在癌组织中明显地高。这些结果,结合我们以前的研究表明:在人胃Ha-ras癌基因上游区可能存在一增强子样作用的区域,对Ha-ras基因起调控作用。该上游区CC~*GG位点的甲基化能降低这种调控作用。仅Ha-ras结构基因的CC~*GG位点甲基化不足以明显影响其转化活性。在体内,Ha-ras基因甲基化水平降低可能与其达表水平升高以至诱发癌症有关。  相似文献   

10.
11.
12.
Radioactive proteins from chemotactic mutants of Escherichia coli with continuous tumbling phenotype (cheB and cheZ) and their otherwise isogenic parent were compared by two-dimensional gel electrophoresis. The system was capable of separating non-methylated methyl-accepting chemotaxis protein (MCP) from its methylated equivalent. The analysis of proteins from the envelope fraction of the bacteria showed that the cheB mutants contained a larger portion of methylated MCP than did the parent. However, the change of MCP methylation level was small, if any, in cheZ strains. The results suggest that the product of cheB gene and the product of cheZ gene are not functional complementary. The product of cheB gene functions in controlling the level of methylation at the stationary state of the organisms. In addition to known MCP species, a new MCP of about 43,000 daltons was found. This MCP appears to be involved in transducing signals of some sugars.  相似文献   

13.
Heightened interest in relevant models for human disease increases the need for improved methods for germline transgenesis. We describe a significant improvement in the creation of transgenic laboratory mice and rats by chemical modification of Sleeping Beauty transposons. Germline transgenesis in mice and rats was significantly enhanced by in vitro cytosine-phosphodiester-guanine methylation of transposons prior to injection. Heritability of transgene alleles was also greater from founder mice generated with methylated versus non-methylated transposon. The artificial methylation was reprogrammed in the early embryo, leading to founders that express the transgenes. We also noted differences in transgene insertion number and structure (single-insert versus concatemer) based on the influence of methylation and plasmid conformation (linear versus supercoiled), with supercoiled substrate resulting in efficient transpositional transgenesis (TnT) with near elimination of concatemer insertion. Combined, these substrate modifications resulted in increases in both the frequency of transgenic founders and the number of transgenes per founder, significantly elevating the number of potential transgenic lines. Given its simplicity, versatility and high efficiency, TnT with enhanced Sleeping Beauty components represents a compelling non-viral approach to modifying the mammalian germline.  相似文献   

14.
15.
Uracil-DNA-glycosylase was isolated from human placenta and purified 2100-fold. The apparent Km value for non-methylated DNA substrate of the enzyme is 3.10(-7) M. However, Km for uracil-DNA-glycosylase was 3 times as low when methylated DNA was used as a substrate. It was shown that the initial rate of uracil excision was greater for the non-methylated than for the hypermethylated DNA. The experimental results indicate that the postreplicative methylation of DNA can interfere with uracil excision.  相似文献   

16.
17.
18.
This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5′-CpG sequences. Their binding to methylated and non-methylated 5′-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5′-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5′-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell’s genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use.  相似文献   

19.
20.
The identification of DNA methylation patterns is a common procedure in the study of epigenetics, as methylation is known to have significant effects on gene expression, and is involved with normal development as well as disease 1-4. Thus, the ability to discriminate between methylated DNA and non-methylated DNA is essential for generating methylation profiles for such studies. Methylated DNA immunoprecipitation (MeDIP) is an efficient technique for the extraction of methylated DNA from a sample of interest 5-7. A sample of as little as 200 ng of DNA is sufficient for the antibody, or immunoprecipitation (IP), reaction. DNA is sonicated into fragments ranging in size from 300-1000 bp, and is divided into immunoprecipitated (IP) and input (IN) portions. IP DNA is subsequently heat denatured and then incubated with anti-5''mC, allowing the monoclonal antibody to bind methylated DNA. After this, magnetic beads containing a secondary antibody with affinity for the primary antibody are added, and incubated. These bead-linked antibodies will bind the monoclonal antibody used in the first step. DNA bound to the antibody complex (methylated DNA) is separated from the rest of the DNA by using a magnet to pull the complexes out of solution. Several washes using IP buffer are then performed to remove the unbound, non-methylated DNA. The methylated DNA/antibody complexes are then digested with Proteinase K to digest the antibodies leaving only the methylated DNA intact. The enriched DNA is purified by phenol:chloroform extraction to remove the protein matter and then precipitated and resuspended in water for later use. PCR techniques can be used to validate the efficiency of the MeDIP procedure by analyzing the amplification products of IP and IN DNA for regions known to lack and known to contain methylated sequences. The purified methylated DNA can then be used for locus-specific (PCR) or genome-wide (microarray and sequencing) methylation studies, and is particularly useful when applied in conjunction with other research tools such as gene expression profiling and array comparative genome hybridization (CGH) 8. Further investigation into DNA methylation will lead to the discovery of new epigenetic targets, which in turn, may be useful in developing new therapeutic or prognostic research tools for diseases such as cancer that are characterized by aberrantly methylated DNA 2, 4, 9-11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号