首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been proposed that cyclical gene expression occurs at a large number of different times during the cell cycle. The existence of a large number of cycle-specific variations in mRNA and protein during the eukaryotic cell cycle raises the problem of how cell-cycle variations are regulated. This is the “infinite regression” or Russian Doll problem where postulating a cell-cycle specific control element pushes the explanation of cell-cycle variation back one step to the problem of how that control element varies during the cell cycle.PCR studies on unperturbed cells indicate Cyclin mRNA content is invariant during the cell cycle. Furthermore, calculations reveal that variations in mRNA content do not account for observed protein variations.Continuous and constant gene expression during the cell cycle, continuous protein accumulation, and protein breakdown only within the mitotic window solves the Russian Doll problem or infinite regression problem. These results, and theoretical ideas support an alternative view of the cell cycle where many of the proposed control systems do not exist.  相似文献   

2.
3.
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.  相似文献   

4.
Cooper S 《IUBMB life》2012,64(1):10-17
The current model of the eukaryotic cell cycle proposes that numerous genes are expressed at different times during the cell cycle. The existence of myriad control points for gene expression leads to theoretical and logical problems for cell cycle control. Each expressed gene requires a control element to appear in a cell-cycle specific manner; this control element requires another control element and so on, ad infinitum. There are also experimental problems with the current model based on ineffective synchronization methods and problems with microarray measurements of mRNA. Equally important, the efficacy of mRNA variation in affecting changes in protein content is negligible. An alternative view of the cell cycle proposes cycle-independent, invariant accumulation of mRNA during the cell cycle with decreases of specific proteins occurring only during the mitotic period of the cell cycle.  相似文献   

5.
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.  相似文献   

6.
7.
A 72,000 mol wt protein designated PABP binds to the poly(A)+ track of messenger RNAs with high affinity and has been suggested to play an important role in mRNA metabolism in eucaryotic cells. We have employed a human PABP cDNA probe to study the expression of this gene at the mRNA level in BALB/c3T3 mouse cells under different growth conditions and in exponentially growing HeLa cells throughout the cell division cycle. We describe experiments which establish that in BALB/c3T3 cells the expression of this gene is growth factor regulated. Moreover, the gene behaves like a primary response gene in that its induction in quiescent cells does not require the prior synthesis of other growth factor-regulated proteins. In exponentially growing HeLa cells PABP mRNA is expressed throughout the cell division cycle indicating that the expression of this gene is not limited to a specific phase of the cell cycle.  相似文献   

8.
Tomato (Solanum lycopersicum) is a model plant for studying fleshy fruit development. Several genetic and molecular approaches have been developed to increase our knowledge about the physiological basis of fruit growth, but very few data are yet available at the proteomic level. The main stages of fruit development were first determined through the dynamics of fruit diameter and pericarp cell number. Then, total proteins were extracted from pericarp tissue at six relevant developmental stages and separated by two-dimensional gel electrophoresis. Protein patterns were markedly different between stages. Proteins showing major variations were monitored. We identified 90 of 1,791 well-resolved spots either by matrix-assisted laser-desorption ionization time-of-flight peptide mass fingerprinting or liquid chromatography-mass spectrometry sequencing and expressed sequence tag database searching. Clustered correlation analysis results pointed out groups of proteins with similar expression profiles during fruit development. In young fruit, spots linked to amino acid metabolism or protein synthesis were mainly expressed during the cell division stage and down-regulated later. Some spots linked to cell division processes could be identified. During the cell expansion phase, spots linked to photosynthesis and proteins linked to cell wall formation transiently increased. In contrast, the major part of the spots related to C compounds and carbohydrate metabolism or oxidative processes were up-regulated during fruit development, showing an increase in spot intensity during development and maximal abundance in mature fruit. This was also the case for spots linked to stress responses and fruit senescence. We discuss protein variations, taking into account their potential role during fruit growth and comparing our results with already known variations at mRNA and metabolite-profiling levels.  相似文献   

9.
10.
Zajdela hepatoma culture cells (ZHC) and mouse embryo fibroblasts (Swiss 3T3) were synchronized in G1 or S phase by serum deprivation and aphidicolin treatment, respectively, to study the variations in adenylyl nucleotide (Ap4X) pool size during the progress of the cell cycle. Only minor variations, which never exceeded a factor of 2, were observed when the Ap4X concentrations were expressed on a cellular basis. The variations were found to be strictly parallel to the ATP variations. Upon release from an aphidicolin block, the minor variations of Ap4X followed DNA synthesis and preceded cytokinesis. When the nucleotide content was compared with the amount of proteins, the faint specific cell cycle changes were almost completely damped when the cells were synchronized by serum deprivation, but remained practically unchanged in the case of aphidicolin synchronization. These results suggest that the observed variations could reflect the accumulation of some nucleotides before cell division. It is not clear yet whether the variation in Ap4X concentration is significant by itself or is simply a phenomenon resulting from changes in the ATP pool.  相似文献   

11.
12.
13.
Vegetative incompatibility in fungi limits the formation of viable heterokaryons. It results from the coexpression of incompatible genes in the heterokaryotic cells and leads to a cell death reaction. In Podospora anserina, a modification of gene expression takes place during this reaction, including a strong decrease of total RNA synthesis and the appearance of a new set of proteins. Using in vitro translation of mRNA and separation of protein products by two-dimensional gel electrophoresis, we have shown that the mRNA content of cells is qualitatively modified during the progress of the incompatibility reaction. Thus, gene expression during vegetative incompatibility is regulated, at least in part, by variation of the mRNA content of specific genes. A subtractive cDNA library enriched in sequences preferentially expressed during incompatibility was constructed. This library was used to identify genomic loci corresponding to genes whose mRNA is induced during incompatibility. Three such genes were characterized and named idi genes for genes induced during incompatibility. Their expression profiles suggest that they may be involved in different steps of the incompatibility reaction. The putative IDI proteins encoded by these genes are small proteins with signal peptides. IDI-2 protein is a cysteine-rich protein. IDI-2 and IDI-3 proteins display some similarity in a tryptophan-rich region.  相似文献   

14.
15.
16.
Regulation of human thymidine kinase during the cell cycle   总被引:42,自引:0,他引:42  
  相似文献   

17.

Background

Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division.

Principal Findings

The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation.

Conclusions

We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.  相似文献   

18.
Hypothetical proteins comprise roughly half of the predicted gene complement of Toxoplasma gondii and Plasmodium falciparum and represent the largest class of uniquely functioning proteins in these parasites. Following the idea that functional relationships can be informed by the timing of gene expression, we devised a strategy to identify the core set of apicomplexan cell division cycling genes with important roles in parasite division, which includes many uncharacterized proteins. We assembled an expanded list of orthologs from the T. gondii and P. falciparum genome sequences (2781 putative orthologs), compared their mRNA profiles during synchronous replication, and sorted the resulting set of dual cell cycle regulated orthologs (744 total) into protein pairs conserved across many eukaryotic families versus those unique to the Apicomplexa. The analysis identified more than 100 ortholog gene pairs with unknown function in T. gondii and P. falciparum that displayed co-conserved mRNA abundance, dynamics of cyclical expression and similar peak timing that spanned the complete division cycle in each parasite. The unknown cyclical mRNAs encoded a diverse set of proteins with a wide range of mass and showed a remarkable conservation in the internal organization of ordered versus disordered structural domains. A representative sample of cyclical unknown genes (16 total) was epitope tagged in T. gondii tachyzoites yielding the discovery of new protein constituents of the parasite inner membrane complex, key mitotic structures and invasion organelles. These results demonstrate the utility of using gene expression timing and dynamic profile to identify proteins with unique roles in Apicomplexa biology.  相似文献   

19.
It is widely assumed that mitotic cyclins are rapidly degraded during anaphase, leading to the inactivation of the cell cycle-dependent protein kinase Cdc2 and allowing exit from mitosis. The proteolysis of mitotic cyclins is ubiquitin/26S proteasome mediated and requires the presence of the destruction box motif at the N terminus of the proteins. As a first attempt to study cyclin proteolysis during the plant cell cycle, we investigated the stability of fusion proteins in which the N-terminal domains of an A-type and a B-type tobacco mitotic cyclin were fused in frame with the chloramphenicol acetyltransferase (CAT ) reporter gene and constitutively expressed in transformed tobacco BY2 cells. For both cyclin types, the N-terminal domains led the chimeric cyclin-CAT fusion proteins to oscillate in a cell cycle-specific manner. Mutations within the destruction box abolished cell cycle-specific proteolysis. Although both fusion proteins were degraded after metaphase, cyclin A-CAT proteolysis was turned off during S phase, whereas that of cyclin B-CAT was turned off only during the late G2 phase. Thus, we demonstrated that mitotic cyclins in plants are subjected to post-translational control (e.g., proteolysis). Moreover, we showed that the proteasome inhibitor MG132 blocks BY2 cells during metaphase in a reversible way. During this mitotic arrest, both cyclin-CAT fusion proteins remained stable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号