首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 microg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 microg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 microg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 microM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 microg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42 degrees C for 1 hour) 15 hours before LPS (10 microg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any dose tested. Nevertheless, when treatments were associated, a reduction of LPS-induced apoptosis was always observed; the reduction was maximal when all the treatments (HS + Hemin + VEGF) were associated. In conclusion, this study demonstrates that LPS is effective in evoking "the heat shock response" with an increase of nonspecific protective molecules (namely Hsp70 and Hsp32) and of VEGF, a specific EC growth factor. The protective role of Hsp32 was also demonstrated. Further investigations are required to clarify the synergic effect of Hsp32, Hsp70, and VEGF, thus elucidating the possible interaction between these molecules.  相似文献   

2.

Background

Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.

Methods

To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.

Results

Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.

Conclusion

These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.  相似文献   

3.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

4.
5.
It has been reported that pretreatment of rats with lipopolysaccharide (LPS) increases myocardial functional recovery in ischemia/reperfusion (I/R) hearts. However, the mechanisms by which LPS induces cardioprotection against I/R injury have not been fully elucidated. In this study, we pretreated rats with LPS (1.0 mg/kg) 24 h before they were subjected to I/R injury, and then examined the roles of heat shock protein-70 (HSP70) and nucleus factor-κB (NF-κB) in LPS-induced cardioprotection. We observed that pretreatment with low-dose LPS resulted in significantly increased levels of HSP70 in the myocardium, which could dramatically inhibit NF-κB translocation and reduce degradation of inhibitory κB. Inhibition of NF-κB, in turn, attenuated release of inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1β, and IL-6) and reduced apoptosis of myocardium and infarct area following I/R injury. Moreover, HSP70 could ameliorate oxidative stress following I/R injury. To further investigate whether increase of HSP70 might be responsible for protection of the myocardium against I/R injury, we co-administered the HSP70 inhibitor, quercetin, with LPS before I/R injury. We found that LPS-induced cardioprotection was attenuated by co-administration with quercetin. Herein, we concluded that increased levels of HSP70 through LPS pretreatment led to inhibition of NF-κB activity in the myocardium after I/R injury. Our results indicated that LPS-induced cardioprotection was mediated partly through inhibition of NF-κB via increase of HSP70, and LPS pretreatment could provide a means of reducing myocardial I/R injury.  相似文献   

6.
Treponema denticola is an oral spirochete that is associated with periodontal disease and detected occasionally in extraoral lesions associated with systemic disorders such as cardiovascular diseases. The effect of specific bacterial products from oral treponemes on endothelium is poorly investigated. This study analyzed the ability of components of the outer membrane of T. denticola (OMT) to induce apoptosis and heat shock proteins (HO-1 and Hsp70) in porcine aortic endothelial cells (pAECs), compared with results obtained with classical pro-inflammatory lipopolysaccharide (LPS) treatment. Cellular apoptosis was detected when pAECs were treated with either OMT or LPS, suggesting that OMT can damage endothelium integrity by reducing endothelial cell vitality. Stimulation with OMT, similarly to LPS response, increased HO-1 and Hsp-70 protein expression in a time-dependent manner, correlating with a rise in HO-1 and Hsp-70 mRNA. Collectively, these results support the hypothesis that T. denticola alters endothelial cell function. Moreover, our in vitro experiments represent a preliminary investigation to further in vivo study using a pig model to elucidate how T. denticola leaves the initial endodontic site and participates in the development of several systemic diseases.  相似文献   

7.
8.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

9.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

10.
11.
12.
一氧化碳吸入对脂多糖诱导大鼠急性肺损伤的保护作用   总被引:14,自引:0,他引:14  
Liu SH  Ma K  Xu B  Xu XR 《生理学报》2006,58(5):483-489
血红素氧合酶(heme oxygenase,HO)降解血红素的主要代谢产物一氧化碳(carbon monoxide,CO)具有抗氧化、抗炎症和抑制细胞凋亡作用,而脂多糖(lipopolysaccharide,LPS)诱导的肺组织过氧化、炎症性损伤及大量肺泡上皮和血管内皮细胞凋亡正是导致肺损伤(lung injury,LI)的关键.由此我们猜想,CO有可能通过上述机制对LI起保护作用.通过静脉注入LPS(5 mg/kg体重)诱导大鼠LI,观察吸入室内空气或2.5×10-4(V/V)CO 3 h后,肺氧化酶学、炎症细胞因子、细胞凋亡、HO-1表达及组织形态学变化.结果显示,静脉注入LPS诱导LI后,CO吸入组大鼠肺肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素6(interlukin-6,IL-6)、丙二醛(maleic dialdehyde,MDA)、髓过氧化物酶(myeloperoxidase,MPO)和细胞凋亡分别为(0.91±0.25)pg/mg蛋白、(0.64±0.05)pg/mg蛋白、(1.02±0.23)nmol/mg蛋白、(7.18±1.62)U/mg蛋白、(1.60±0.34)%,均显著低于LI组的(1.48±0.23)pg/mg蛋白、(1.16±0.26)pg/mg蛋白、(1.27+0.33)nmol/mg蛋白、(8.16+1.49)U/mg蛋白、(3.18±0.51)%(P<0.05).CO吸入组HO-1、白细胞介素10(interlukin-10,IL-10)表达和超氧化物歧化酶(superoxide dismutase,SOD)活性分别为(5.43±0.92)、(0.26±0.07)pg/mg蛋白、(60.09±10.21)U/mg蛋白,它们均显著高于LI组的(3.08±0.82)、(0.15±0.03)pg/mg蛋白、(50.98±6.88)U/mg蛋白(P<0.05).与LI组相比,CO吸入组肺损伤减轻.研究结果表明,低浓度CO吸入通过抗氧化、抗炎症、抑制细胞凋亡、上调HO-1表达而减轻LPS诱导的肺损伤.  相似文献   

13.
The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of pro-inflammatory factors and prevents LPS-induced liver injury likely by disrupting NHE1-Hsp70 interaction which consequently reduces the activation of IκB-α-NF-κB pathway in liver.  相似文献   

14.
Induction of heat shock proteins (HSPs) protects cells from oxidative injury. Here Hsp72, Hsp27 and heme oxygenase-1 (HO-1) were induced in cultured rat astrocytes, and protection against oxidative stress was investigated. Astrocytes were treated with sodium arsenite (20-50 micro m) for 1 h, which was non-toxic to cells, 24 h later they were exposed to 400 micro m H2O2 for 1 h, and cell death was evaluated at different time points. Arsenite triggered strong induction of HSPs, which was prevented by 1 micro g/mL cycloheximide (CXH). H2O2 caused cell loss and increased cell death with features of apoptosis, i.e. TdT-mediated dUTP nick-end labelling (TUNEL) reaction and caspase-3 activation. These features were abrogated by pre-treatment with arsenite, which prevented cell loss and significantly reduced the number of dead cells. The protective effect of arsenite was not detected in the presence of CHX. Pre-treatment with arsenite increased protein kinase B (Akt) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation after H2O2. However, while Akt phosphorylation was prevented by CHX, Erk1/2 phosphorylation was further enhanced by CHX. The results show that transient arsenite pre-treatment induces Hsp72, HO-1 and, to a lesser extent, Hsp27; it reduces H2O2-induced astrocyte death; and it causes selective activation of Akt following H2O2. It is suggested that HSP expression at the time of H2O2 exposure protects astrocytes from oxidative injury and apoptotic cell death by means of pro-survival Akt.  相似文献   

15.
15-Deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ2), a cyclopentenone prostaglandin, displays a potent anti-inflammatory effect at micromolar concentrations (>2 microM) through direct inhibition of nuclear factor (NF)-kappa B activation. Here we show that at submicromolar concentrations (0.1-0.5 microM) 15d-PGJ2 retains the ability to suppress the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in lipopolysaccharide (LPS)-activated murine J774 macrophages under the conditions of a prolonged incubation (>12 h). Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of 15d-PGJ2. Inhibition of HO-1 activity or scavenging carbon monoxide (CO), a byproduct derived from heme degradation, significantly attenuated the suppressive activity of 15d-PGJ2. Furthermore, LPS-induced NF-kappa B activation assessed by the inhibitory protein of NF-kappa B(I kappa B) degradation and p50 nuclear translocation was diminished in cells subjected to prolonged treatment with the low concentration of 15d-PGJ2. Treatment of cells with the protein synthesis inhibitor, cycloheximide, or the specific p38 MAP kinase inhibitor, SB203580, blocked the induction of HO-1 and suppression of LPS-induced I kappa B degradation mediated by 15d-PGJ2. Likewise, HO inhibitor and CO scavenger were effective in abolishing the inhibitory effects of 15d-PGJ2 on NF-kappa B activation induced by LPS. The functional role of CO was further demonstrated by the use of a CO releasing molecule, tricarbonyldichlororuthenium(II) dimer, which significantly suppressed LPS-induced nuclear translocation of p50 as assessed by confocal immunofluorescence. Collectively, these data suggest that even at submicromolar concentrations 15d-PGJ2 can exert an anti-inflammatory effect in macrophages through a mechanism that involves the action of HO/CO.  相似文献   

16.
Shiga-like toxin (SLT) has been implicated in the pathogenesis of hemolytic uremic syndrome and its attendant endothelial cell (EC) injury. Key serotypes of Escherichia coli produce SLT-1 in addition to another highly pro-inflammatory molecule, lipopolysaccharide (LPS). It has previously been established that SLT-1 induces EC apoptosis and that LPS enhances this effect. LPS alone has no affect on human EC viability, and the mechanism for this enhancement remains unknown. In the present report, we demonstrate that SLT-1 sensitizes EC to LPS-induced apoptosis. Pretreatment with SLT-1 sensitized EC to LPS-induced apoptosis, whereas pretreatment with LPS did not influence SLT-1-induced apoptosis. SLT-1 exposure resulted in decreased expression of FLICE-like inhibitory protein (FLIP), an anti-apoptotic protein that has previously been shown to block LPS-induced apoptosis. This SLT-1-mediated decrease in FLIP expression preceded the onset of apoptosis elicited by SLT-1 alone or in combination with LPS. SLT-1-mediated decrements in FLIP expression correlated in a dose- and time-dependent manner with sensitization to LPS-induced apoptosis. Finally, transient or stable overexpression of FLIP protected against LPS enhancement of SLT-1-induced apoptosis, and this protection corresponded with sustained expression of FLIP. Together, these data suggest that SLT-1 sensitizes EC to LPS-induced apoptosis by inhibiting FLIP expression.  相似文献   

17.
Hypothermia for myocardial protection or storage of vascular grafts may damage the endothelium and impair vascular function upon reperfusion/rewarming. Catalytic iron pools and oxidative stress are important mediators of cold-induced endothelial injury. Because endothelial cells are highly adaptive, we hypothesized that hypothermic preconditioning (HPC) protects cells at 0°C by a heme oxygenase-1 (HO-1) and ferritin-dependent mechanism. Storage of human coronary artery endothelial cells at 0°C caused the release of lactate dehydrogenase, increases in bleomycin-detectible iron (BDI), and increases in the ratio of oxidized/reduced glutathione, signifying oxidative stress. Hypoxia increased injury at 0°C but did not increase BDI or oxidative stress further. HPC at 25°C for 15–72 h attenuated these changes by an amount achievable by pretreating cells with 10–20 μM deferoxamine, an iron chelator, and protected cell viability. Treating cells with hemin chloride at 37°C transiently increased intracellular heme, HO-1, BDI, and ferritin. Elevated heme/iron sensitized cells to 0°C but ferritin was protective. HPC increased iron maximally after 2 h at 25°C and ferritin levels peaked after 15 h. HO-1 was not induced. When HPC-mediated increases in ferritin were blocked by deferoxamine, protection at 0°C was diminished. We conclude that HPC-mediated endothelial protection from hypothermic injury is an iron- and ferritin-dependent process.  相似文献   

18.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin, iron, and CO. The inducible isoform (HO-1) has been implicated as a modulator of the inflammatory response. HO-1 activity can be induced by hemin and inhibited with zinc protoporphyrin IX (ZnPP). Using these reagents, we assessed the possibility that HO-1 modulates the inflammatory response by altering the expression of endothelial cell adhesion molecules. Endotoxin (lipopolysaccharide, LPS)-induced expression of P- and E-selectin expression was quantified in different vascular beds of the rat using the dual radiolabeled monoclonal antibody technique. Pretreatment with hemin attenuated, whereas ZnPP treatment exacerbated, the increased selectin expression normally elicited by LPS. Biliverdin, at an equimolar dosage, was as effective as hemin in attenuating LPS-induced selectin expression in the lung, kidneys, liver, and intestines. These findings indicate that the anti-inflammatory properties of HO-1 may be related to an inhibitory action of P- and E-selectin expression in the vasculature. Biliverdin (or its metabolite, bilirubin), rather than CO, may account for this action of HO-1 on endothelial cell adhesion molecule expression.  相似文献   

19.
Gram-negative bacterial sepsis remains a common, life-threatening event. The prognosis for patients who develop sepsis-related complications, including the development of acute respiratory distress syndrome (ARDS), remains poor. A common finding among patients and experimental animals with sepsis and ARDS is endothelial injury and/or dysfunction. A component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) or endotoxin, has been implicated in the pathogenesis of much of the endothelial cell injury and/or dysfunction associated with these disease states. LPS is a highly proinflammatory molecule that elicits a wide array of endothelial responses, including the upregulation of cytokines, adhesion molecules, and tissue factor. In addition to activation, LPS induces endothelial cell death that is apoptotic in nature. This review summarizes the evidence for LPS-induced vascular endothelial injury and examines the molecular signaling pathways that activate and inhibit LPS-induced endothelial apoptosis. Furthermore, the role of apoptotic signaling molecules in mediating LPS-induced activation of endothelial cells will be considered.  相似文献   

20.

Background

Acute respiratory distress syndrome (ARDS) can result in a life-threatening form of respiratory failure, and established, effective pharmacotherapies are therefore urgently required. Quercetin is one of the most common flavonoids found in fruits and vegetables, and has potent anti-inflammatory and anti-oxidant activities. Quercetin has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO)-1. Here, we investigated whether the intratracheal administration of quercetin could suppress lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice as well as the involvement of HO-1 in quercetin’s suppressive effects.

Methods

Mouse model of ALI were established by challenging intratracheally LPS. The wet lung-to-body weight ratio, matrix metalloproteinase (MMP)-9 activities, and pro-inflammatory cytokine productions, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in bronchoalveolar lavage fluid (BALF) were examined in ALI mice with or without quercetin pretreatment. We also examined the effects of quercetin on LPS stimulation in the mouse alveolar macrophage cell line, AMJ2-C11 cells.

Results

Intratracheal administration of quercetin decreased the wet lung-to-body weight ratio. Moreover, quercetin decreased MMP-9 activity and the production of pro-inflammatory cytokines in BALF cells activated by LPS in advance. We determined the expression of quercetin-induced HO-1 in mouse lung, e.g., alveolar macrophages (AMs), alveolar and bronchial epithelial cells. When AMJ2-C11 cells were cultured with quercetin, a marked suppression of LPS-induced pro-inflammatory cytokine production was observed. The cytoprotective effects were attenuated by the addition of the HO-1 inhibitor SnPP. These results indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects.

Conclusions

Our findings indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects. Intratracheal administration of quercetin will lead to new supportive strategies for cytoprotection in these serious lung conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号