首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue-specific distribution of basic β-1,3-glucanase (Glu2), basic class II chitinase (Ch2), basic class IV chitinase (Ch4), and acidic class III chitinase (SE2) were examined both in leaves and roots of sugar beet treated with salicylic acid (SA), benzothiadiazole (BTH) and glycine betaine. Protein localization was monitored by immunohistological analysis using specific antibodies. BTH, SA as well as glycine betaine induced both Glu2 and chitinase isozymes in leaves and roots of treated plants. The enzymes were accumulated in extracellular space and cell walls. They were mostly deposited in parenchyma cells of leaves and cortex parenchyma and endodermis of roots. In leaf tissues, BTH and SA induced proteins more effectively than glycine betaine but the effect of glycine betaine in roots was as efficient as BTH and SA. Glycine betaine induced the formation of extracellular globuli containing Ch4. Induced proteins were spatially distributed over the whole plant regardless the site of the inducer application. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Minibayeva F  Mika A  Lüthje S 《Protoplasma》2003,221(1-2):67-72
Summary.  Wheat (Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots. Received June 10, 2002; accepted September 24, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.  相似文献   

3.
AtPROPEP是拟南芥(Arabidopsis thaliana)具有7个成员的基因家族, 编码内源短肽激素。AtPROPEP基因家族编码的蛋白质C端23个氨基酸短肽能够被2个同源激酶受体AtPEPR1和AtPEPR2识别并结合, 引起下游反应。然而, 对于该家族成员AtPROPEP2,3−6的表达对茉莉酸(JA)和水杨酸(SA)的响应以及在根生长中的作用并不清楚。GUS染色和定量RT-PCR分析结果表明, AtPROPEP2–6的表达对于JA和SA的响应不同, 暗示着它们可能通过不同的方式参与植物的先天免疫反应。AtPROPEP3和AtPROPEP4过表达植株的表型分析表明, AtPROPEP3和AtPROPEP4促进拟南芥根的生长。  相似文献   

4.
Liu H  Wang X  Zhang H  Yang Y  Ge X  Song F 《Gene》2008,420(1):57-65
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.  相似文献   

5.
Trichoderma species are opportunistic fungi residing primarily in soil, tree bark and on wild mushrooms. Trichoderma is capable of killing other fungi and penetrating plant roots, and is commonly used as both a biofungicide and inducer of plant defence against pathogens. These fungi also exert other beneficial effects on plants including growth promotion and tolerance to abiotic stresses, primarily mediated by their intimate interactions with roots. In root–microbe interactions (both beneficial and harmful), fungal secreted proteins play a crucial role in establishing contact with the roots, fungal attachment, root penetration and triggering of plant responses. In Trichoderma–root interactions, the sucrose present in root exudates has been demonstrated to be important in fungal attraction. Attachment to roots is mediated by hydrophobin-like proteins, and secreted swollenins and plant cell wall degrading enzymes facilitate internalization of the fungal hyphae. During the early stage of penetration, suppression of plant defence is vital to successful initial root colonisation; this is mediated by small soluble cysteine-rich secreted proteins (effector-like proteins). Up to this stage, Trichoderma's behaviour is similar to that of a plant pathogen invading root structures. However, subsequent events like oxidative bursts, the synthesis of salicylic acid by the plants, and secretion of elicitor-like proteins by Trichoderma spp. differentiate this fungus from pathogens. These processes induce immunity in plants that help counter subsequent invasion by plant pathogens and insects. In this review, we present an inventory of soluble secreted proteins from Trichoderma that might play an active role in beneficial Trichoderma–plant interactions, and review the function of such proteins where known.  相似文献   

6.
Root colonization by specific nonpathogenic bacteria can induce a systemic resistance in plants to pathogen infections. In bean, this kind of systemic resistance can be induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 and depends on the production of salicylic acid by this strain. In a model with plants grown in perlite we demonstrated that Pseudomonas aeruginosa 7NSK2-induced resistance is equivalent to the inclusion of 1 nM salicylic acid in the nutrient solution and used the latter treatment to analyze the molecular basis of this phenomenon. Hydroponic feeding of 1 nM salicylic acid solutions induced phenylalanine ammonia-lyase activity in roots and increased free salicylic acid levels in leaves. Because pathogen-induced systemic acquired resistance involves similar changes it was concluded that 7NSK2-induced resistance is mediated by the systemic acquired resistance pathway. This conclusion was validated by analysis of phenylalanine ammonia-lyase activity in roots and of salicylic acid levels in leaves of soil-grown plants treated with Pseudomonas aeruginosa. The induction of systemic acquired resistance by nanogram amounts of salicylic acid is discussed with respect to long-distance signaling in systemic acquired resistance.  相似文献   

7.
Induction of pathogenesis-related proteins in tobacco leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

8.
9.
The treatment of pea roots with azelaic acid for 72 h led to a change in the content of 28 proteins: the content of 20 proteins decreased, and the content of 8 proteins (including the phenylpropanoid metabolism enzymes, which are involved in the synthesis of phytoalexins) increased.  相似文献   

10.
11.
12.
Root colonization of Arabidopsis thaliana by the nonpathogenic, rhizosphere-colonizing, biocontrol bacterium Pseudomonas fluorescens WCS417r has been shown to elicit induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst). The ISR response differs from the pathogen-inducible systemic acquired resistance (SAR) response in that ISR is independent of salicylic acid and not associated with pathogenesis-related proteins. Several ethylene-response mutants were tested and showed essentially normal symptoms of Pst infection. ISR was abolished in the ethylene-insensitive mutant etr1-1, whereas SAR was unaffected. Similar results were obtained with the ethylene-insensitive mutants ein2 through ein7, indicating that the expression of ISR requires the complete signal-transduction pathway of ethylene known so far. The induction of ISR by WCS417r was not accompanied by increased ethylene production in roots or leaves, nor by increases in the expression of the genes encoding the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic (ACC) synthase and ACC oxidase. The eir1 mutant, displaying ethylene insensitivity in the roots only, did not express ISR upon application of WCS417r to the roots, but did exhibit ISR when the inducing bacteria were infiltrated into the leaves. These results demonstrate that, for the induction of ISR, ethylene responsiveness is required at the site of application of inducing rhizobacteria.  相似文献   

13.
Two rice (Oryza sativa L.) cultivars differing in chilling sensitivity, Changbaijiu (chilling-tolerant) and Zhongjian (chilling-sensitive) were pre-treated with 0.5, 1.0 and 2.0 mM salicylic acid (SA) for 24 h before chilling at 5°C for 1 d. Chilling induced SA accumulation, particularly conjugated SA in both leaves and roots of the two rice cultivars. After SA administration, SA accumulated in the roots of both cultivars at a concentration-dependent manner, whereas only a slight increase was observed in their leaves. Conjugated SA accounted for most of the increase. The beneficial effect of SA treatment on protecting rice seedlings from chilling injury was not observed at any concentration in either cultivar. Pre-treatment with SA even decreased their chilling tolerance confirmed by increased electrolyte leakage and lipid peroxidation. Further, most of the activities of antioxidant enzymes decreased or remained unchanged in leaves and roots of SA pre-treated seedlings after chilling. These results implied that down-regulation of antioxidant defence might be involved in the reduction of chilling tolerance in SA-pre-treated plants.  相似文献   

14.
15.
To study the possible involvement of plant hormones in the synthesis of stress proteins in tomato upon inoculation with Cladosporium fulvum, we investigated the induction of mRNAs encoding PR proteins and ethylene biosynthesis enzymes by ethephon, 2,6-dichloroisonicotinic acid (INA) and salicylic acid (SA) by northern blot analysis. Ethephon slightly induced some but not all mRNAs encoding intra- and extracellular PR proteins. INA induced all PR protein mRNAs analysed, except for intracellular chitinase and extracellular PR-4. SA induced all PR protein mRNAs analyzed, except for intracellular chitinase and osmotin. None of the inducers affected the expression of ACC synthase mRNA, whereas all three induced ethylene-forming enzyme (EFE) mRNA.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - HR hypersensitive response - INA 2,6-dichloroisonicotinic acid - PR pathogenesis-related - SA salicylic acid - SAR systemic acquired resistance  相似文献   

16.
17.
Many of the proteins and defense pathways in maize that are activated in an organ-specific manner in leaves and roots during aboveground caterpillar attack have not yet been identified. In this study, we examined systemic and organ-specific defenses in the insect-resistant maize genotype, Mp708, when infested aboveground with fall armyworm (FAW, Spodoptera frugiperda). We used proteomic and network biology analyses and then integrated these data with known FAW resistance QTL to create a protein abundance QTL (pQTL) subnetwork. Using 10-plex tandem mass spectrometry tags (TMT) proteomics technique, we identified a total of 4675 proteins in leaves and roots of control and FAW-infested plants. Among the identified proteins, 794 had significant differences in abundance in response to FAW herbivory. Proteins that were upregulated in leaves during FAW infestation included jasmonic acid biosynthetic enzymes, cysteine proteases, protease inhibitors, REDOX-related proteins, and peroxidases. In roots, highly abundant proteins were involved in ET biosynthesis, DNA expression regulation, and pyruvate biosynthesis. We found many proteins that possibly contribute different defense functions to FAW resistance in Mp708. One potential resistance mechanism identified was that trade-offs between growth and defense responses were reduced in Mp708. Some of the proteins involved in this trade-off that were found within the pQTL subnetwork were the Kinesin-like protein (GRMZM2G046186_P01) and Pi starvation-induced protein (GRMZM2G118037_P01). We proposed other mechanisms contributing to resistance that suggest that jasmonic acid and ethylene control the local accumulation of insecticidal cysteine protease (MIR1-CP) in leaves, while ethylene controlled the systemic accumulation of MIR1-CP in roots. Finally, we hypothesized that receptor kinases such as receptor protein kinase 1 (GRMZM2G055678) could be involved in the activation of root-specific defense responses during aboveground insect infestation.  相似文献   

18.
The expression of resveratrol synthase (RS) genes is induced by biotic and abiotic factors in peanut cell cultures. However, little is known about the regulation of the RS gene expression in peanut plants. The expression of RS genes was investigated in peanut plants with a peanut RS clone, pPRS3C, which encodes two polypeptides that show about a 96% amino acid sequence identity to peanut RS2 and RS3, respectively. A low level of RS mRNA was detected in the roots of peanut plants grown aseptically in vitro. In mature peanut plants that were grown in the field, however, RS mRNAs were present at relatively high levels in both the roots and pods, but at below the detection limit in leaves. RS mRNAs were abundant in young pods and decreased dramatically in mature pods. The RS mRNA expression was induced by yeast extract and UV in leaves and roots, and also by wounding in leaves. Stress hormones, such as ethylene, jasmonic acid, and salicylic acid, induced RS mRNA accumulation in leaves. These results indicate that the RS gene expression is induced by biotic and abiotic stresses through the stress hormones in peanut plants. The induction of the RS gene expression by biotic and abiotic stresses could provide peanut plants with protection from microbial infections through resveratrol synthesis. The RS gene expression in developing pods has significant implications in terms of the role of resveratrol as a phytochemical for human health.  相似文献   

19.
以丹参幼苗为材料,研究了茉莉酸甲酯(MeJA)和水杨酸(SA)对其地上地下部分蔗糖代谢和根系中酚酸类物质积累的影响.结果显示:(1)外源施用MeJA能够显著增强幼苗叶片和根中酸性蔗糖转化酶活性,促进蔗糖降解,减少根系中蔗糖含量;同时根中丹参素(来源于酪氨酸-衍生物支路)、原儿茶酸(类苯丙烷支路的中间产物)、咖啡酸(来源于类苯丙烷支路)、迷迭香酸(来源于类苯丙烷支路和酪氨酸-衍生物支路)、丹酚酸B(丹参素、咖啡酸、迷迭香酸的衍生物)以及总酚酸含量均显著增加.(2)外施SA可显著降低幼苗叶片和根中酸性蔗糖转化酶活性及叶片中性蔗糖转化酶活性,抑制蔗糖降解,显著增加地上部分蔗糖含量,根中蔗糖含量和对照相比差异不显著;同时根中丹参素含量减少,但原儿茶酸、咖啡酸以及迷迭香酸含量增加,丹酚酸B和总酚酸类物质含量与对照相比差异不显著.因此推测,植物中蔗糖代谢影响丹参素合成的酪氨酸-衍生物支路,而不影响原儿茶酸、咖啡酸及迷迭香酸等合成的类苯丙烷支路.  相似文献   

20.
Plant roots have important roles not only in absorption of water and nutrients, but also in stress tolerance such as desiccation, salt, and low temperature. We have investigated stress-response proteins from rice roots using 2-dimensional polyacrylamide-gel electrophoresis and found a rice protein, RO-292, which was induced specifically in roots when 2-week-old rice seedlings were subjected to salt and drought stress. The full-length RO-292 cDNA was cloned, and was determined to encode a protein of 160 amino acid residues (16.9 kDa, pI 4.74). The deduced amino acid sequence showed high similarity to known rice PR10 proteins, OsPR10a/PBZ1 and OsPR10b. RO-292 mRNA accumulated rapidly upon drought, NaCl, jasmonic acid and probenazole, but not by exposure to low temperature or by abscisic acid and salicylic acid. The RO-292 gene was also up-regulated by infection with rice blast fungus. Interestingly, induction was observed almost exclusively in roots, thus we named the gene RSOsPR10 (root specific rice PR10). The present results indicate that RSOsPR10 is a novel rice PR10 protein, which is rapidly induced in roots by salt, drought stresses and blast fungus infection possibly through activation of the jasmonic acid signaling pathway, but not the abscisic acid and salicylic acid signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号