首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aberrant sialylation in cancer cells is thought to be a characteristic feature associated with malignant properties including invasiveness and metastatic potential. Sialidase which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, has been suggested to play important roles in many biological processes through regulation of cellular sialic acid contents. The altered expression of sialidase observed in cancer would, therefore, suggest its involvement in the malignant process. In mammalian cells, three types of sialidase cloned and characterized to date were found to behave in different manners during carcinogenesis. Recent progress in molecular cloning of these sialidases has facilitated elucidation of the molecular mechanisms and significance of these alterations. Herein we briefly describe our own studies on sialidase changes associated with malignant transformation and summarize the topic from both a retrospective and a prospective viewpoint. Sialidases are indeed closely related to malignancy and are thus potential targets for cancer diagnosis and therapy. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Aberrant glycosylation is a characteristic feature of cancer cells. In particular, altered sialylation is closely associated with malignant properties, including invasiveness and metastatic potential. To elucidate the molecular mechanisms underlying the aberrancy, our studies have focused on mammalian sialidase, which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids. The four types of mammalian sialidase identified to date show altered expression and behave in different manners during carcinogenesis. The present review briefly summarizes results on altered expression of sialidases and their possible roles in cancer progression. These enzymes are indeed factors defining cancer malignancy and thus potential targets for cancer diagnosis and therapy.  相似文献   

3.
Human sialidase as a cancer marker   总被引:1,自引:0,他引:1  
Altered sialylation of cell surface glycoproteins and glycolipids is closely related to the malignant phenotype of cancer cells, including the metastatic potential and invasiveness. Many cancer-related antigens in clinical use contain sialic acids at the terminal position of sugar chains in the molecules. To elucidate the molecular mechanism, we focused our investigation on sialidase, which catalyzes the removal of sialic acid residues from the glycoconjugates. Four types of human sialidases identified to date behave in different manners during carcinogenesis. One of the sialidases, found in the lysosomes, showed downregulation in cancers, promoting anchorage-independent growth, and metastatic ability, while another, found in the plasma membrane, showed marked upregulation, causing apoptosis suppression. It was found that estimation of the mRNA levels of sialidases by real-time PCR allowed discrimination of cancerous from noncancerous tissues and even determination of the pathological stage in some cancers. Immunohistochemistry of cancer tissues using the antibody against the plasma membrane sialidase was useful for clinical diagnosis. This paper briefly summarizes our findings of the altered sialidase expression in cancers and the possibility of their clinical application as cancer markers. Human sialidases are indeed related to malignancy and may be potential targets for cancer diagnosis and therapy.  相似文献   

4.
Sialidase activity associated with rat brain synaptic junctions (SJ) and synaptic membranes (SM) was determined. Both fractions released sialic acid from exogenous glycopeptides and gangliosides. SJ accounted for 5-10% of the total sialidase activity recovered from SM following extraction with Triton X-100, and the specific activity of SJ sialidase was 60% of that of the parent SM fraction. Intrinsic SJ sialidase hydrolysed 12-15% of the sialic acid associated with endogenous SJ glycoproteins. Sialic acid residues associated with SJ glycoproteins were labelled with sodium borotritide and SJ proteins fractionated by affinity chromatography on concanavalin A-agarose. SJ glycoproteins that reacted with concanavalin A (con A+ glycoproteins) accounted for 25% of the total SJ [3H]sialic acid. Intrinsic SJ sialidase hydrolysed 20% of the [3H]sialic acid associated with these glycoproteins. Each molecular weight class of con A+ glycoprotein previously shown to be a specific component of the postsynaptic apparatus contained sialic acid and was acted on by intrinsic SJ sialidase.  相似文献   

5.
Numerous studies have shown that changes in the glycan structures of cells correlate with tumorigenesis, however, a casual link between the altered glycan structures and the abnormal GJIC in cancer cells is rarely studied. In this paper, we investigated the effects of sialic acid on the Cx43 gap junction functions, and clarified its potential mechanisms thereby. Sialidase significantly increased Cx43 gap junction functions in constructed Cx43-Hela cells along with down-regulation of cell surface sialic acid, which is dramatically reversed by sialidase inhibitor NeuAc2en. Further study indicated that sialidase failed to affect Cx43 at either protein or phosphorylation level, instead, it induced a considerable fraction of Triton X-100 insoluble, as compared with the untreated cells. We also found that sialidase treatment reduced the N-cadherin glycosylation and enhanced both Cx43–ZO-1 interaction and N-cadherin–ZO-1 association. Moreover, sialidase promoted the cell–cell adhesion with elevating N-cadherin binding to β-catenin, accompanied by increasing colocalization of Cx43 with microtubules at the cell periphery. Based on live cell microscopy, with the FARP technology in the Cx43-EGFP-Hela cells, we found that Cx43 in the plague recovered more quickly in sialidase treatment group, indicating that sialidase could promote the Cx43 traffic to the plague. Overall, these studies indicate cell surface sialic acid on cancer cells may suppress Cx43 gap junction functions via inhibiting Cx43 traffic to the plague involving in sialylated N-cadherin, a process that likely underlies the intimate association between abnormal GJIC and glycosylation on cancer development.  相似文献   

6.
Sialidase removes sialic acid from sialoglycoconjugates and plays crucial roles in many physiological and pathological processes. Various human cancers express an abnormally high level of the plasma membrane-associated sialidase isoform.Visualization of sialidase activity in living mammalian tissues would be useful not only for understanding sialidase functions but also for cancer diagnosis. However, since enzyme activity of mammalian sialidase is remarkably weak compared with that of bacterial and viral sialidases, it has been difficult to detect sialidase activity in mammalian tissues. We synthesized a novel benzothiazolylphenol-based sialic acid derivative (BTP-Neu5Ac) as a fluorescent sialidase substrate. BTP-Neu5Ac can visualize sialidase activities sensitively and selectively in acute rat brain slices. Cancer cells implanted orthotopically in mouse colons and human colon cancers (stages T3-T4) were also clearly detected with BTP-Neu5Ac. The results suggest that BTP-Neu5Ac is useful for histochemical imaging of sialidase activities.  相似文献   

7.
It has been known for over a decade that sialidase (neuraminidase) treatment could substantially enhance the capacity of resting B cells to stimulate the proliferation of allogeneic and antigen specific, syngeneic T cells. Thus, cell-surface sialic acid was implicated as a potential modulator of immune cell interaction. However, little progress has been made in either identifying explicit roles for sialic acid in this system or in hypothesizing mechanisms to explain the "neuraminidase effect." Here we show for the first time that cell surface sialic acid on medium incubated B cells blocks access to costimulatory molecules on the B cell surface, and that this is the most likely explanation for the neuraminidase effect. Further, we show that it is likely to be upregulation of ICAM-1 and its subsequent engagement of LFA-1 rather than loss of cell surface sialic acid that in part regulates access to CD86 and other costimulatory molecules. However, we cannot exclude a role for CD86-bound sialic acid on the B cell in modulating binding to T cell CD28. Because sialidase treatment of resting B cells but not resting T cells enables T cell activation, we suggest that sialidase treatment may still be an analogue for an authentic step in B cell activation, and show that for highly activated B cells (activated with polyclonal anti-IgM plus INF-gamma) there is specific loss 2, 6-linked sialic acid. Potential roles for sialic acid in modulating B cell/T cell collaboration are discussed.  相似文献   

8.
The procyclic stage of Trypanosoma brucei in the insect vector expresses a surface-bound trans-sialidase (TbTS) that transfers sialic acid from glycoconjugates in the environment to glycosylphosphatidylinositol-anchored proteins on its surface membrane. RNA interference against TbTS abolished trans-sialidase activity in procyclic cells but did not diminish sialidase activity, suggesting the presence of a separate sialidase enzyme for hydrolyzing sialic acid. A search of the T. brucei genome sequence revealed seven other putative genes encoding proteins with varying similarity to TbTS. RNA interference directed against one of these proteins, TbSA C, greatly decreased the sialidase activity but had no effect on trans-sialidase activity. The deduced amino acid sequence of TbSA C shares only 40% identity with TbTS but conserves most of the relevant residues required for catalysis. However, the sialidase has a tryptophan substitution for a tyrosine at position 170 that is crucial in binding the terminal galactose that accepts the transferred sialic acid. When this same tryptophan substitution in the sialidase was placed into the recombinant trans-sialidase, the mutant enzyme lost almost all of its trans-sialidase activity and increased its sialidase activity, further confirming that the gene and protein identified correspond to the parasite sialidase. Thus, in contrast to all other trypanosomes analyzed to date that express either a trans-sialidase or a sialidase but not both, T. brucei expresses these two enzymatic activities in two separate proteins. These results suggest that African trypanosomes could regulate the amount of critical sialic acid residues on their surface by modulating differential expression of each of these enzymes.  相似文献   

9.
10.
This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at three-dimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.  相似文献   

11.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

12.
Abstract— In agreement with other investigators it has been shown that endogenous as well as added gangliosides are a substrate for brain sialidase. The release of sialic acid was enhanced in the presence of Triton X-100; this might be due to the action of the detergent on the ganglioside micelles. The sialic acid release from endogenous gangliosides was observed over 48 h and compared with the effect of the sialidase on the endogenous glycoproteins. Though the hydrolysis of sialic acid from gangliosides is much faster in the first hours, after 48 h 40 per cent of the total bound sialic was released from both substrates at pH 4.0 and 37°C.
Sialoglycopeptides obtained from brain glycoproteins are also metabolized by the sialidase. No effect of Triton X-100 on this substrate has been observed. From sialoglycopeptides, fractions can be obtained by DEAE-Sephadex A-50 column chromatography with a sialic acid content from 8 to 26 per cent. The fractions with a high sialic acid content were about equally active towards brain sialidase as gangliosides. The results agree with the similar turnover rate observed for the carbohydrate chains from gangliosides and glycoproteins, but are in contrast to the observations of other investigators who have stated that glycoproteins are a poor substrate for brain sialidase. In our experiments bovine and ovine submaxillary mucins and sialyl-lactoses showed only slight activity compared to gangliosides and selected brain sialoglycopeptides.  相似文献   

13.
This review summarizes the current research on human exo-alpha-sialidase (sialidase, neuraminidase). Where appropriate, the properties of viral, bacterial, and human sialidases have been compared. Sialic acids are implicated in diverse physiological processes. Sialidases, as enzymes acting upon sialic acids, assume importance as well. Sialidases hydrolyze the terminal, non-reducing, sialic acid linkage in glycoproteins, glycolipids, gangliosides, polysaccharides, and synthetic molecules. Therefore, a variety of assays are available to measure sialidase activity. Human sialidase is present in several organs and cells. Its cellular distribution could be cytosolic, lysosomal, or in the membrane. Human sialidase occurs in a high molecular-mass complex with several other proteins, including cathepsin A and beta-galactosidase. Multi-protein complexation is important for the in vivo integrity and catalytic activity of the sialidase. However, multi-protein complexation, the occurrence of isoenzymes, diverse subcellular localization, thermal instability, and membrane association have all contributed to difficulties in purifying and characterizing human sialidases. Human sialidase isoenzymes have recently been cloned and sequenced. Even though crystal structures for the human sialidases are not available, the highly conserved regions of the sialidase from various organisms have facilitated molecular modeling of the human enzyme and raise interesting evolutionary questions. While the molecular mechanisms vary, genetic defects leading to human sialidase deficiency are closely associated with at least two well-known human diseases, namely sialidosis and galactosialidosis. No therapy is currently available for either disease. A thorough investigation of human sialidases is therefore crucial to human health.  相似文献   

14.
Under some cell culture conditions, recombinant glycoprotein therapeutics expressed in Chinese hamster ovary (CHO) cells lose sialic acid during the course of the culture (Sliwkowski et al., 1992; Munzert et al., 1996). A soluble sialidase of CHO cell origin degrades the expressed recombinant protein and has been shown to be released into the culture fluid as the viability of the cells decreases. To reduce the levels of the sialidase and to prevent desialylation of recombinant protein, a CHO cell line has been developed that constitutively expresses sialidase antisense RNA. Several antisense expression vectors were prepared using different regions of the sialidase gene. Co-transfection of the antisense constructs with a vector conferring puromycin resistance gave rise to over 40 puromycin resistant clones that were screened for sialidase activity. A 5' 474 bp coding segment of the sialidase cDNA, in the inverted orientation in an SV 40-based expression vector, gave maximal reduction of the sialidase activity to about 40% wild-type values. To test if this level of sialidase would lead to increased sialic acid content of an expressed recombinant protein, the 474 antisense clone was employed as a host for expression of human DNase as a model glycoprotein. The sialic acid content of the DNase produced in the antisense cultures was compared with material made in the wild-type parental cell line. About 20-37% increase in sialic acid content, or 0.6-1.1 mole of additional sialic acid out of a total of 3.0 mole on the product, was found on the DNase made in the antisense cell lines.  相似文献   

15.
The role of sialidase in the depletion of glomerular sialic acid induced by diabetes has been investigated in uninephrectomized rats. Four months after streptozotocin administration, diabetic rats showed an enhanced urinary excretion of albumin and transferrin, which was associated with a decrease of sialic acid concentration in isolated glomeruli. Despite the sialic acid depletion, the glomerular sialidase activity was unchanged. These results indicate that the decreased glomerular sialic acid concentration observed in diabetic nephropathy might be caused by a disturbance of the sialylation of glomerular structures.  相似文献   

16.
The influence of sialidase and sialyltransferase on the binding of 3H-estradiol to estrogen receptors in baboon uterus was investigated to ascertain if sialylation was involved. Specific binding capacity increased approximately 37% in the presence of sialidase, although Kd values essentially remained unchanged. 3H-Estradiol binding was correlated with free sialic acid in the presence of either sialidase or sialyltransferase. As sialidase concentrations were increased, 3H-estradiol binding and free sialic acid concentration increased linearly (r = 0.937, p less than 0.001). Incubation of 22 x 10(-5) U sialidase with its inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, decreased binding capacity and sialic acid concentration (r = 0.929, p less than 0.001). Although a decrease in binding capacity and free sialic acid concentration was observed in the presence of increasing amounts of sialyltransferase, a positive correlation was found between these two parameters (r = 0.839, p less than 0.035). A negative trend that was statistically insignificant was observed between binding capacity and sialic acid concentration when 2 x 10(-4) U sialyltransferase was incubated with the inhibitor, acetylsalicylic acid (r = -0.571, p = 0.195). The sialic acid concentration increased, while the 3H-estradiol binding capacity decreased. Collectively, these results show that both sialidase and sialyltransferase affect the binding of estradiol to its receptor in opposite directions. We suggest that biological activities of estrogen receptors in target cells may be regulated by the extent of sialylation of the receptor molecule itself. This posttranslational alteration may represent a new type of control mechanism for estrogen action.  相似文献   

17.
N Razi  A Varki 《Glycobiology》1999,9(11):1225-1234
We recently reported that the sialic acid-specific binding sites of CD22 molecules on B cells are masked by endogenous ligands, and can be unmasked by sialidase treatment or cellular activation. Here, we show that many other human blood leukocyte types have endogenous sialic acid binding sites that can be unmasked by sialidase treatment. Truncation of sialic acid side chains on the soluble probes used for detection abolishes all binding, indicating the specificity of the interaction for the details of sialic acid structure. There is limited overlap between alpha2-6- and alpha2-3-sialic acid-specific binding sites, which are unmasked on monocytes, natural killer cells, a minority of mature T cells, neutrophils, and some cultured human leukemic cell lines. Activation with phorbol ester and calcium ionophore causes spontaneous exposure of some of the binding sites, occurring over a period of minutes on neutrophils and several hours on monocytes and U937 leukemia cells. Activation is accompanied by some evidence for desialylation of cell surface molecules. Thus, many human blood cells have specific binding sites for sialic acids, masked by endogenous sialylated ligands. Cellular activation can unmask these sites, possibly by the action of an endogenous sialidase. The nearly universal masking of such sites in unactivated blood cells could explain why many of these sialic acid-binding lectins have not been previously discovered. Similar considerations may apply to sialic acid binding lectins of other cell types and tissues.  相似文献   

18.
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically highly heterogeneous in structure, and this heterogeneity is influenced by many factors, such as type of cellular host and rate of Ab secretion. Glycan heterogeneity can affect the Fc-dependent activities of antibodies. It has been shown recently that increased Fc sialylation can result in decreased binding to immobilized antigens and some Fcγ receptors, as well as decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In contrast, increased Fc sialylation enhances the anti-inflammatory activity of antibodies. To produce antibodies with increased effector functions, we developed host cell lines that would limit the degree of sialylation of recombinantly-expressed antibodies. Towards this end, the catalytic domain of the Arthrobacter ureafaciens sialidase (sialidase A) was engineered for secreted expression in mammalian cell lines. Expression of this sialidase A gene in mammalian cells resulted in secreted expression of soluble enzyme that was capable of removing sialic acid from antibodies secreted into the medium. Purified antibodies secreted from these cells were found to possess very low levels of sialylation compared with the same antibodies purified from unmodified host cells. The low sialylated antibodies exhibited similar binding affinity to soluble antigens, improved ADCC activity, and they possessed pharmacokinetic properties comparable to their more sialylated counterparts. Further, it was observed that the amount of sialidase A expressed was sufficient to thoroughly remove sialic acid from Abs made in high-producing cell lines. Thus, engineering host cells to express sialidase A enzyme can be used to produce recombinant antibodies with very low levels of sialylation.Key words: antibodies, IgGs, glycans, oligosaccharides, sialic acid, sialidase, ADCC, CDC, effector functions, cells, Fc receptors, proteases  相似文献   

19.
The amount of sialic acid on the surface of the neutrophil (PMN) influences its ability to interact with other cells. PMN activation with various stimuli mobilizes intracellular sialidase to the plasma membrane, where it cleaves sialic acid from cell surfaces. Because enhanced PMN adherence, spreading, deformability, and motility each are associated with surface desialylation and are critical to PMN diapedesis, we studied the role of sialic acid on PMN adhesion to and migration across pulmonary vascular endothelial cell (EC) monolayers in vitro. Neuraminidase treatment of either PMN or EC increased adhesion and migration in a dose-dependent manner. Neuraminidase treatment of both PMNs and ECs increased PMN adhesion to EC more than treatment of either PMNs or ECs alone. Moreover, neuraminidase treatment of ECs did not change surface expression of adhesion molecules or release of IL-8 and IL-6. Inhibition of endogenous sialidase by either cross-protective antineuraminidase antibodies (45.5% inhibition) or competitive inhibition with pseudo-substrate (41.2% inhibition) decreased PMN adhesion to ECs; the inhibitable sialidase activity appeared to be associated with activated PMNs. Finally, EC monolayers preincubated with activated PMNs became hyperadhesive for subsequently added resting PMNs, and this hyperadhesive state was mediated through endogenous PMN sialidase activity. Blocking anti-E-selectin, anti-CD54 and anti-CD18 antibodies decreased PMN adhesion to tumor necrosis factor-activated ECs but not to PMN-treated ECs. These data implicate desialylation as a novel mechanism through which PMN-EC adhesion can be regulated independent of de novo protein synthesis or altered adhesion molecule expression. The ability of activated PMNs, through endogenous sialidase activity, to render the EC surface hyperadherent for unstimulated PMNs may provide for rapid amplification of the PMN-mediated host response.  相似文献   

20.
Summary Eight insects (some adult and some larval forms) are studied for the presence of sialic acids in the cells of the salivary glands. This was sought by staining with alcian blue and Azure A at different pH accompanied by acid hydrolysis, sialidase digestion and methylation-saponification.On the basis of susceptibility to acid hydrolysis and sialidase digestion, different sialic acids are discernable. Though there is apparently no correlation between the secretion of sialic acid and the feeding habits of these insects, there is an interesting correlation between these two in the case of nectar and pollen eating habit of Apis.Presented at the 56th Session of Indian Science Congress. 2–9 January, 1969, Bombay, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号