首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Similarities between protein three-dimensional structures can reveal evolutionary and functional relationships not apparent from sequence comparison alone. Here we report such a similarity between the metabolic enzymes histidine phosphocarrier protein kinase (HPrK) and phosphoenolpyruvate carboxykinase (PCK), suggesting that they are evolutionarily related. Current structure classifications place PCK and other P-loop containing nucleotidyl-transferases into different folds. Our comparison of both HPrK and PCK to other P-loop containing proteins reveals that all share a common structural motif consisting of an alphabeta segment containing the P-loop flanked by an additional beta-strand that is adjacent in space, but far apart along the sequence. Analysis also shows that HPrK/PCK differ from other P-loop containing structures no more than they differ from each other. We thus suggest that HPrK and PCK should be classified with other P-loop containing proteins, and that all probably share a common ancestor that probably contained a simple P-loop motif with different protein segments being added or lost over the course of evolution. We used the structure-based sequence alignment containing residues specific to HPrK/PCK to identify additional members of this P-loop containing family.  相似文献   

3.
The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.  相似文献   

4.
The Corynebacterium glutamicum (C. glutamicum) phosphoenolpyruvate carboxykinase (PCK) gene (pckA) was cloned into an Escherichia coli expression vector with a glutathione S-transferase (GST) tag. This recombinant DNA can produce highly overexpressed tagged protein in soluble form. This is the first report of the production of C. glutamicum PCK overexpressed in E. coli. The GST-fused PCK was purified using the glutathione-Sepharose 4B affinity column and the GST tag was removed in one-step. This one-step, easy purification method would be very useful for future mutational and structural studies. The molecular mass of the purified protein is approximately 68 kDa as confirmed by mass spectrometry and it is a monomeric enzyme. Also, the enzyme assays revealed that C. glutamicum PCK has a GTP-specific activity and that its activity is maximal in the presence of both Mn2+ and Mg2+.  相似文献   

5.
The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511). This report found that Ca(2+) bound only at the active site, indicating that there is likely no surface allosteric site. (45)Ca(2+) bound to PCK with a K(d) of 85 micro M and n of 0.92. Glu508Gln Glu511Gln mutant PCK had normal activation by Ca(2+). Separate roles of Mg(2+), which binds the nucleotide, and Ca(2+), which bridges the nucleotide and the anionic substrate, are implied, and the catalytic mechanism of PCK is better explained by studies of the Ca(2+)-bound structure. Partial trypsin digestion abolishes Ca(2+) activation (desensitizes PCK). N-terminal sequencing identified sensitive sites, i.e., Arg2 and Arg396. Arg2Ser, Arg396Ser, and Arg2Ser Arg396Ser (double mutant) PCKs altered the kinetics of desensitization. C-terminal residues 397 to 540 were removed by trypsin when wild-type PCK was completely desensitized. Phe409 and Phe413 interact with residues in the Ca(2+) binding site, probably stabilizing the C terminus. Phe409Ala, DeltaPhe409, Phe413Ala, Delta397-521 (deletion of residues 397 to 521), Arg396(TAA) (stop codon), and Asp269Glu (Ca(2+) site) mutations failed to desensitize PCK and, with the exception of Phe409Ala, appeared to have defects in the synthesis or assembly of PCK, suggesting that the structure of the C-terminal domain is important in these processes.  相似文献   

6.
7.
8.
目的: 探讨微小核糖核酸106b(miR-106b)对肝细胞葡萄糖异生作用及其机制。方法: 正常人L02肝细胞培养于含10%胎牛血清的DMEM中,利用miR-106b模拟物和抑制剂(mimics和antagomiR,分别20 nmol/L)处理L02肝细胞24 h,Western blot法检测蛋白和磷酸化蛋白的表达,定量RT-PCR检测mRNA的表达,葡萄糖试剂盒检测培养液中葡萄糖含量。结果: miR-106b模拟物可明显增加磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)的蛋白表达(P均<0.01)、增加磷酸烯醇式丙酮酸羧激酶1(PCK1)的mRNA表达(P<0.01)、降低葡萄糖激酶(GCK)的mRNA表达(P<0.01)。miR-106b抑制剂可显著降低PEPCK和G6Pase的蛋白表达(P均<0.01)、降低PCK1的mRNA表达(P<0.01)、增加GCK的mRNA表达(P<0.01)。此外,miR-106b模拟物或抑制剂可显著降低或增加信号转导和转录激活子3(STAT3)的蛋白表达(P均<0.01)。STAT3特异性抑制剂可显著拮抗miR-106b抑制剂对肝细胞葡萄糖异生的抑制作用。结论: miR-106b通过抑制STAT3信号通路而增加肝细胞葡萄糖异生。  相似文献   

9.
HPr kinase/phosphatase (HPrK/P) modifies serine 46 of histidine-containing protein (HPr), the phosphorylation state of which is the control point of carbon catabolite repression in low G+C Gram-positive bacteria. To understand the structural mechanism by which HPrK/P carries out its dual, competing activities we determined the structure of full length HPrK/P from Mycoplasma pneumoniae (PD8 ID, 1KNX) to 2.5A resolution. The enzyme forms a homo-hexamer with each subunit containing two domains connected by a short loop. The C-terminal domain contains the well-described P-loop (Walker A box) ATP binding motif and takes a fold similar to phosphoenolpyruvate carboxykinase (PEPCK) from Escherichia coli as recently described in other HPrK/P structures. As expected, the C-terminal domain is very similar to the C-terminal fragment of Lactobacillus casei HPrK/P and the C-terminal domain of Staphylococcus xylosus HPrK/P; the N-terminal domain is very similar to the N-terminal domain of S.xylosus HPrK/P. Unexpectedly, the N-terminal domain resembles UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-diaminopimelate ligase (MurE), yet the function of this domain is unclear. We discuss these observations as well as the structural significance of mutations in the P-loop and HPrK/P family sequence motif.  相似文献   

10.
C(4) photosynthesis is an adaptation over the classical C(3) pathway that has evolved multiple times independently. These convergences are accompanied by strong variations among the independent C(4) lineages. The decarboxylating enzyme used to release CO(2) around Rubisco particularly differs between C(4) species, a criterion used to distinguish three distinct biochemical C(4) subtypes. The phosphoenolpyruvate carboxykinase (PCK) serves as a primary decarboxylase in a minority of C(4) species. This enzyme is also present in C(3) plants, where it is responsible for nonphotosynthetic functions. The genetic changes responsible for the evolution of C(4)-specific PCK are still unidentified. Using phylogenetic analyses on PCK sequences isolated from C(3) and C(4) grasses, this study aimed at resolving the evolutionary history of C(4)-specific PCK enzymes. Four independent evolutions of C(4)-PCK were shown to be driven by positive selection, and nine C(4)-adaptive sites underwent parallel genetic changes in different C(4) lineages. C(4)-adaptive residues were also observed in C(4) species from the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) subtype and particularly in all taxa where a PCK shuttle was previously suggested to complement the NADP-ME pathway. Acquisitions of C(4)-specific PCKs were mapped on a species tree, which revealed that the PCK subtype probably appeared at the base of the Chloridoideae subfamily and was then recurrently lost and secondarily reacquired at least three times. Linking the genotype to subtype phenotype shed new lights on the evolutionary transitions between the different C(4) subtypes.  相似文献   

11.
This is the first report on a bacterial verterbrate-type GTP-dependent phosphoenolpyruvate carboxykinase (PCK). The pck gene of Mycobacterium smegmatis was cloned. The recombinant PCK was overexpressed in Escherichia coli in a soluble form and with high activity. The purified enzyme was found to be monomeric (72 kDa), thermophilic (optimum temperature, 70 degrees C), very stable upon storage at 4 degrees C, stimulated by thiol-containing reducing agents, and inhibited by oxalate and by alpha-ketoglutarate. The requirement for a divalent cation for activity was fulfilled best by Mn(2+) and Co(2+) and poorly by Mg(2+). At 37 degrees C, the highest V(m) value (32.5 units/mg) was recorded with Mn(2+) and in the presence of 37 mm dithiothreitol (DTT). The presence of Mg(2+) (2 mm) greatly lowered the apparent K(m) values for Mn(2+) (by 144-fold in the presence of DTT and by 9.4-fold in the absence of DTT) and Co(2+) (by 230-fold). In the absence of DTT but in the presence of Mg(2+) (2 mm) as the co-divalent cation, Co(2+) was 21-fold more efficient than Mn(2+). For producing oxaloacetate, the enzyme utilized both GDP and IDP; ADP served very poorly. The apparent K(m) values for phosphoenolpyruvate, GDP, and bicarbonate were >100, 66, and 8300 micrometer, respectively, whereas those for GTP and oxaloacetate (for the phosphoenolpyruvate formation activity) were 13 and 12 microm, respectively. Thus, this enzyme preferred the gluconeogenesis/glycerogenesis direction. This property fits the suggestion that in M. smegmatis, pyruvate carboxylase is not anaplerotic but rather gluconeogenic (Mukhopadhyay, B., and Purwantini, E. (2000) Biochim. Biophys. Acta. 1475, 191-206). Both in primary structure and kinetic properties, the mycobacterial PCK was very similar to its vertebrate-liver counterparts and thus could serve as a model for these enzymes; examples for several immediate targets are presented.  相似文献   

12.
A gene encoding a putative GTP-specific phosphoenolpyruvate carboxykinase has been cloned and sequenced from the type I amitochondriate protist Giardia intestinalis. The deduced amino acid sequence is related most closely to homologs from hyperthermophilic archaebacteria and only more distantly to homologs from Eubacteria and Metazoa. Most enzymes of Giardia core metabolism, however, are related more closely to eubacterial and metazoan homologs. An archaebacterial relationship has been noted previously for the unusual acetyl-CoA synthetase (ADP-forming) of this organism. The results suggest that phosphoenolpyruvate carboxykinase and acetyl-CoA synthetase have been acquired from different sources than most enzymes of Giardia core metabolism.  相似文献   

13.
By deletion analysis of the fusion genes FBP1-lacZ and PCK1-lacZ we have identified a number of strong regulatory regions in the genes FBP1 and PCK1 which encode fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase. Lack of expression of beta-galactosidase in fusions lacking sequences from the coding regions suggests the existence of downstream activating elements. Both promoters have several UAS and URS regions as well as sites implicated in catabolite repression. We have found in both genes consensus sequences for the binding of the same regulatory proteins, such as yAP1, MIG1 or the complex HAP2/HAP3/HAP4. Neither deletion nor overexpression of the MIG1 gene affected the regulated expression of the FBP1 or PCK1 genes.  相似文献   

14.
15.
The gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) from the chicken was isolated from a recombinant library containing the chicken genome in phage lambda Charon 4A. The isolated clone, lambda PCK1cc, contains the complete gene for the enzyme as well as both 5' and 3' flanking sequences. The gene is approximately 8 kilobases in length divided into 8 exons, as demonstrated by restriction endonuclease mapping and DNA-RNA heteroduplex analysis. Southern blotting of chicken chromosomal DNA digested with various restriction enzymes shows a pattern predicted from the restriction map of lambda PCK1cc. The phosphoenolpyruvate carboxykinase gene is present as a single copy in the haploid chicken genome. The 5' region of the gene was defined by S1 nuclease mapping and by sequencing. Two mRNA species with discrete 5' ends were observed using S1 nuclease mapping. The ratio between the amounts of these multiple forms of mRNA is the same in chicken kidney and liver and is not affected by induction of the enzyme mRNA by cAMP. Examination of sequence homologies with the gene for rat cytosolic phosphoenolpyruvate carboxykinase indicates a putative control region contained in flanking sequences at the 5' end of the gene.  相似文献   

16.
17.
A rabbit antiserum was raised against phosphoenolpyruvate carboxykinase (PCK) purified from Urochloa panicoides, a PCK-type C4 monocot. The antiserum was used to screen a cDNA expression library constructed from U. panicoides leaf poly(A)+RNA. Inserts from immunoreactive clones were used to rescreen the library and obtain three overlapping cDNAs comprising a 2220 bp composite sequence. The single complete open reading frame of 1872 bp encodes PCK1, a 624 amino acid polypeptide with a predicted molecular mass of 68474 Da. Comparison of PCK1 with other ATP-dependent PCKs indicates that PCK1 is significantly larger, mainly due to an N-terminal extension of greater than 65 residues, and reveals high sequence identity across the central portion of the protein, especially over seven sub-sequences. One of these sub-sequences spans motifs common to several ATP-utilising enzymes for phosphate and divalent cation binding. The anti-PCK antiserum recognises a 69 kDa polypeptide on immunoblots of either purified PCK or U. panicoides leaf extracts. However, polypeptides of 63, 62, 61 and 60 kDa are also immunoreactive. Amino terminal sequencing of polypeptides from preparations of purified PCK demonstrates that these smaller polypeptides are related to PCK1, and time course experiments show that these polypeptides arise from the breakdown of PCK during isolation. Northern blot analysis indicates that the 2.7 kb PCK mRNA is abundant in green leaves but not in roots or etiolated shoots. Moreover, PCK mRNA levels increase gradually during greening, reaching maximum levels after about 84 h.  相似文献   

18.
The human PCK1 gene encoding phosphoenolpyruvate carboxykinase (GTP) (PEPCK) was isolated and sequenced. There is 91% amino acid sequence identity (567/622 residues) between the human and the rat proteins, with conservation of intron/exon borders. A polymorphic dinucleotide microsatellite with the structure (CA)16(TA)5(CA) was identified in the 3′ untranslated region of the cloned human PCK1 gene. This highly informative genetic marker has an estimated PIC value of 0.79 and heterozygosity of 0.81. Analysis of the RW pedigree demonstrated recombination between PCK1 and the MODY gene on chromosome 20. Multipoint linkage analysis of the reference pedigrees of the Centre d'Etude du Polymorphisme Humain localized PCK1 on the genetic map of chromosome 20 at a position distal to markers that are closely linked to MODY. PCK1 is part of a conserved linkage group on mouse Chromosome 2 with identical gene order but expanded length in the human genome.  相似文献   

19.
20.
Extinction of phosphoenolpyruvate carboxykinase (PCK) gene expression in hepatoma x fibroblast hybrids is mediated by a trans-acting genetic locus designated tissue-specific extinguisher 1 (TSE1). To identify PCK gene sequences required for extinction, hepatoma transfectants expressing PCK-thymidine kinase (TK) chimeric genes were fused with TK- fibroblasts and PCK-TK expression in the resulting hybrids was monitored. Expression of a PCK-TK chimera containing PCK sequences between base pairs -548 and +73 was extinguished in four of five hepatoma transfectants tested, although hybrids derived from one transfectant clone failed to extinguish PCK-TK expression. In contrast, crosses between hepatoma transfectants expressing the herpesvirus TK gene from its own promoter and TK- fibroblasts produced TK+ hybrids; extinction of the transfected TK gene was not observed. Thus, rat PCK gene sequences between base pairs -548 and +73 are sufficient for tissue-specific extinction in hybrid cells. Extinction of PCK-TK gene expression in transfectant microcell hybrids mapped specifically to human chromosome 17, the site of human TSE1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号