首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce substantial intra-subtypic cross-protection in humans to warrant the option of use, either prior to or just after the start of a pandemic outbreak. In the present study, we evaluated a split H5N1 A/H5N1/Vietnam/1194/04, clade 1 candidate vaccine, adjuvanted with a proprietary oil-in- water emulsion based Adjuvant System proven to be well-tolerated and highly immunogenic in the human (Leroux-Roels et al. (2007) The Lancet 370:580–589), for its ability to induce intra-subtypic cross-protection against clade 2 H5N1/A/Indonesia/5/05 challenge in ferrets.

Methodology and Principal Findings

All ferrets in control groups receiving non-adjuvanted vaccine or adjuvant alone failed to develop specific or cross-reactive neutralizing antibodies and all died or had to be euthanized within four days of virus challenge. Two doses of adjuvanted split H5N1 vaccine containing ≥1.7 µg HA induced neutralizing antibodies in the majority of ferrets to both clade 1 (17/23 (74%) responders) and clade 2 viruses (14/23 (61%) responders), and 96% (22/23) of vaccinees survived the lethal challenge. Furthermore lung virus loads and viral shedding in the upper respiratory tract were reduced in vaccinated animals relative to controls suggesting that vaccination might also confer a reduced risk of viral transmission.

Conclusion

These protection data in a stringent challenge model in association with an excellent clinical profile highlight the potential of this adjuvanted H5N1 candidate vaccine as an effective tool in pandemic preparedness.  相似文献   

2.
Immunity to influenza A H9N2 viruses induced by infection and vaccination   总被引:8,自引:0,他引:8  
Avian influenza A H9N2 viruses are widespread among domestic poultry and were recently isolated from humans with respiratory illness in China. Two antigenically and genetically distinct groups of H9N2 viruses (G1 and G9) are prevalent in China. To evaluate a strategy for vaccination, we compared G1 and G9 viruses for their relative immunogenicity and cross-protective efficacy. Infection of BALB/c mice with representative viruses of either group protected against subsequent challenge with the homologous or heterologous H9N2 virus in the absence of detectable cross-reactive serum hemagglutination inhibition antibody. Mice injected intramuscularly with inactivated G1 whole virus vaccine were completely protected from challenge with either H9N2 virus. In contrast, mice administered inactivated G9 vaccine were only partially protected against heterologous challenge with the G1 virus. These results have implications for the development of human vaccines against H9N2 viruses, a priority for pandemic preparedness.  相似文献   

3.
Avian influenza viruses (AIV) are very active in several parts of the globe and are the cause of huge economic loss for the poultry industry and also human fatalities. Three dimensional modeling was carried out for neuraminidase (NA) and hemagglutinin (HA) proteins of AIV. The C-score, estimated TM-Score, and estimated root-mean-square deviation (RMSD) score for NA of H5N1 were −1.18, 0.57 ± 0.15, and 9.8 ± 7.6, respectively. The C-score, estimated TM-Score, and estimated RMSD score for NA of H9N2 were −1.43, 0.54 ± 0.15, and 10.5 ± 4.6, respectively. The C-score, estimated TM-Score, and estimated RMSD score for HA of H5N1 were −0.03, 0.71 ± 0.12, and 7.7 ± 4.3, respectively. The C-score, estimated TM-Score, and estimated RMSD score for HA of H9N2 were −0.57, 0.64 ± 0.13, and 8.9 ± 4.6, respectively. Intrinsically disordered regions were identified for the NA and HA proteins of H5N1 and H9N2 with the use of PONDR program. Linear B cell epitope was predicted using BepiPred 2 program for NA and HA of H5N1 and H9N2 avian influenza strains. Discontinuous epitopes were predicted by Discotope 2 program. The linear epitopes that were considered likely to be immunogenic and within the intrinsically disordered region for the NA of H5N1 was TKSTNSRSGFEMIWDPNGWTGTDSSFSVK, and for H9N2 it was VGDTPRNDDSSSSSNCRDPNNERGAP. In the case of HA of H5N1, it was QRLVPKIATRSKVNGQSG and ATGLRNSPQRERRRKK; for H9N2 it was INRTFKPLIGPRPLVNGLQG and SLKLAVGLRNVPARSSR. The discontinuous epitopes of NA of H5N1 and H9N2 were identified at various regions of the protein structure spanning from amino acid residue positions 90 to 449 and 107 to 469, respectively. Similarly, the discontinuous epitopes of HA of H5N1 and H9N2 were identified in the amino acid residue positions 27 to 517 and 136 to 521, respectively. This study has identified potential and highly immunogenic linear and conformational B-cell epitopes towards developing a vaccine against AIV both for human and poultry use.  相似文献   

4.
H5N1 influenza A viruses are exacting a growing human toll, with more than 240 fatal cases to date. In the event of an influenza pandemic caused by these viruses, embryonated chicken eggs, which are the approved substrate for human inactivated-vaccine production, will likely be in short supply because chickens will be killed by these viruses or culled to limit the worldwide spread of the infection. The Madin-Darby canine kidney (MDCK) cell line is a promising alternative candidate substrate because it supports efficient growth of influenza viruses compared to other cell lines. Here, we addressed the molecular determinants for growth of an H5N1 vaccine seed virus in MDCK cells, revealing the critical responsibility of the Tyr residue at position 360 of PB2, the considerable requirement for functional balance between hemagglutinin (HA) and neuraminidase (NA), and the partial responsibility of the Glu residue at position 55 of NS1. Based on these findings, we produced a PR8/H5N1 reassortant, optimized for this cell line, that derives all of its genes for its internal proteins from the PR8(UW) strain except for the NS gene, which derives from the PR8(Cambridge) strain; its N1 NA gene, which has a long stalk and derives from an early H5N1 strain; and its HA gene, which has an avirulent-type cleavage site sequence and is derived from a circulating H5N1 virus. Our findings demonstrate the importance and feasibility of a cell culture-based approach to producing seed viruses for inactivated H5N1 vaccines that grow robustly and in a timely, cost-efficient manner as an alternative to egg-based vaccine production.  相似文献   

5.
鸭源H9N2AIV血凝素基因序列比较   总被引:1,自引:0,他引:1  
为明确国内外鸭源H9N2亚型禽流感病毒(Avian influenza virus,AIV)血凝素基因(hemagglutinin,HA)的遗传进化关系、血凝素蛋白裂解位点的氨基酸结构特征和血凝素蛋白受体结合位点的氨基酸变异特征,本研究选取GenBank中登录鸭源H9N2亚型AIV HA基因,通过MEGA4.1进行比对和分析,并绘制其遗传进化树。结果表明,鸭源H9N2亚型AIV在遗传进化上分为2大谱系:即Ck-Bj-1-94-like和North-Ame-like,中国大陆鸭源H9N2亚型AIV和亚欧美其它国家鸭源H9N2亚型AIV在遗传进化上分居完全不同的谱系,相互之间遗传进化关系较远。从血凝素受体结合位点看,亚欧美国家鸭源H9N2亚型AIV在第183、190和226位点的氨基酸均为鸭源AIV经典H、E和Q,且高度保守。但中国大陆地区H9N2亚型AIV第183位为N;第190位为A or V or T,与中国大陆鸡源H9N2亚型AIV一致;第226位中国鸭源H9N2亚型AIV有相当一部分为L,且近年福建省H9N2亚型AIV分离株在此处均为L。提示我们,中国大陆地区H9N2亚型AIV鸭鸡和鸡鸭相互交叉感染较为普遍。  相似文献   

6.
Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains.  相似文献   

7.
Refocusing of B-cell responses can be achieved by preserving the overall fold of the antigen structure but selectively mutating the undesired antigenic sites with additional N-linked glycosylation motifs for glycan masking the vaccine antigen. We previously reported that glycan-masking recombinant H5 hemagglutinin (rH5HA) antigens on residues 83, 127, and 138 (g127 + g138 or g83 + g127 + 138 rH5HA) elicited broader neutralizing antibodies and protection against heterologous clades/subclades of high pathogenic avian influenza H5N1 viruses. In this study, we engineered the stably expressing Chinese hamster ovary (CHO) cell clones for producing the glycan-masking g127 + g138 and g83 + g127 + g138 rH5HA antigens. All of these glycan-masking rH5HA antigens produced in stable CHO cell clones were found to be mostly oligomeric structures. Only the immunization with the glycan-masking g127 + g138 but not g83 + g127 + g138 rH5HA antigens elicited more potent neutralizing antibody titers against four out of five heterologous clades/subclades of H5N1 viral strains. The increased neutralizing antibody titers against these heterologous viral strains were correlated with the increased amounts of stem-binding antibodies, only the glycan-masking g127 + g138 rH5HA antigens can translate into more protection against live viral challenges. The stable CHO cell line-produced glycan-masking g127 + g138 rH5HA can be used for H5N1 subunit vaccine development.  相似文献   

8.
Oseltamivir-resistant H1N1 influenza viruses emerged in 2007 to 2008 and have subsequently circulated widely. However, prior to 2007 to 2008, viruses possessing the neuraminidase (NA) H274Y mutation, which confers oseltamivir resistance, generally had low growth capability. NA mutations that compensate for the deleterious effect of the NA H274Y mutation have since been identified. Given the importance of the functional balance between hemagglutinin (HA) and NA, we focused on amino acid changes in HA. Reverse genetic analysis showed that a mutation at residue 82, 141, or 189 of the HA protein promotes virus replication in the presence of the NA H274Y mutation. Our findings thus identify HA mutations that contributed to the replacement of the oseltamivir-sensitive viruses of 2007 to 2008.  相似文献   

9.
Yang P  Duan Y  Zhang P  Li Z  Wang C  Dong M  Tang C  Xing L  Gu H  Zhao Z  Liu X  Zhang S  Wang X 《PloS one》2012,7(1):e30252

Background

The increase in recent outbreaks and unpredictable changes of highly pathogenic avian influenza (HPAI) H5N1 in birds and humans highlights the urgent need to develop a cross-protective H5N1 vaccine. We here report our development of a multiple-clade H5N1 influenza vaccine tested for immunogenicity and efficacy to confer cross-protection in an animal model.

Methodology/Principal Findings

Mice received two doses of influenza split vaccine with oil-in-water emulsion adjuvant SP01 by intranasal administration separated by two weeks. Single vaccines (3 µg HA per dose) included rg-A/Vietnam/1203/2004(Clade 1), rg-A/Indonesia/05/2005(Clade 2.1), and rg-A/Anhui/1/2005(Clade 2.3.4). The trivalent vaccine contained 1 µg HA per dose of each single vaccine. Importantly, complete cross-protection was observed in mice immunized using trivalent vaccine with oil-in-water emulsion adjuvant SP01 that was subsequently challenged with the lethal A/OT/SZ/097/03 influenza strain (Clade 0), whereas only the survival rate was up to 60% in single A/Anhui/1/2005 vaccine group.

Conclusion/Significance

Our findings demonstrated that the multiple-clade H5N1 influenza vaccine was able to elicit a cross-protective immune response to heterologous HPAI H5N1 virus, thus giving rise to a broadly cross-reactive vaccine to potential prevention use ahead of the strain-specific pandemic influenza vaccine in the event of an HPAI H5N1 influenza outbreak. Also, the multiple-clade adjuvanted vaccine could be useful in allowing timely initiation of vaccination against unknown pandemic virus.  相似文献   

10.
11.
Influenza vaccines that induce greater cross-reactive or heterosubtypic immunity (Het-I) may overcome limitations in vaccine efficacy imposed by the antigenic variability of influenza A viruses. We have compared mucosal versus traditional parenteral administration of inactivated influenza vaccine for the ability to induce Het-I in BALB/c mice and evaluated a modified Escherichia coli heat-labile enterotoxin adjuvant, LT(R192G), for augmentation of Het-I. Mice that received three intranasal (i.n.) immunizations of H3N2 vaccine in the presence of LT(R192G) were completely protected against lethal challenge with a highly pathogenic human H5N1 virus and had nasal and lung viral titers that were at least 2,500-fold lower than those of control mice receiving LT(R192G) alone. In contrast, mice that received three vaccinations of H3N2 vaccine subcutaneously in the presence or absence of LT(R192G) or incomplete Freund's adjuvant were not protected against lethal challenge and had no significant reductions in tissue virus titers observed on day 5 post-H5N1 virus challenge. Mice that were i.n. administered H3N2 vaccine alone, without LT(R192G), displayed partial protection against heterosubtypic challenge. The immune mediators of Het-I were investigated. The functional role of B and CD8+ T cells in Het-I were evaluated by using gene-targeted B-cell (IgH-6(-/-))- or beta2-microglobulin (beta2m(-/-))-deficient mice, respectively. beta2m(-/-) but not IgH-6(-/-) vaccinated mice were protected by Het-I and survived a lethal infection with H5N1, suggesting that B cells, but not CD8+ T cells, were vital for protection of mice against heterosubtypic challenge. Nevertheless, CD8+ T cells contributed to viral clearance in the lungs and brain tissues of heterotypically immune mice. Mucosal but not parenteral vaccination induced subtype cross-reactive lung immunoglobulin G (IgG), IgA, and serum IgG anti-hemagglutinin antibodies, suggesting the presence of a common cross-reactive epitope in the hemagglutinins of H3 and H5. These results suggest a strategy of mucosal vaccination that stimulates cross-protection against multiple influenza virus subtypes, including viruses with pandemic potential.  相似文献   

12.
Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.  相似文献   

13.
Eight monoclonal antibodies against hemagglutinin of influenza A virus A/Chicken/Henan/01/2004(H5N1) were produced by a DNA prime and inactivated virions-boost immunization strategy. Among the monoclonal antibodies, 3 (H50, H56, and H57) exhibited hemagglutination inhibition activity. Western blot analyses revealed that all the monoclonal antibodies reacted to the prokaryotically expressed HA1 of A/Chicken/Henan/01/2004(H5N1). The monoclonal antibodies were then used to characterize 10 avian influenza H5N1 viruses isolated from China during 2004 to 2007, by using the hemagglutination inhibition test and the antigen-capture enzyme-linked immunosorbent assay. The isolates could be divided into 4 different antigenic groups according to their responses to the monoclonal antibodies. The antigenic grouping of these 10 H5N1 isolates, using these antibodies, did not completely match their phylogenetic classification based on the hemagglutinin sequences. The results showed there were antigenic variations within the subclade 2.3.4 of H5N1, which is predominant in China.  相似文献   

14.
抗体选择压作用下H9N2亚型禽流感病毒HA基因的变异   总被引:2,自引:0,他引:2  
摘要:【目的】了解H9N2亚型禽流感病毒(AIV)在抗体选择压作用下的遗传变异。【方法】将制备疫苗用的LG1株H9N2亚型AIV分别接种含有母源抗体鸡胚(A组)和不含有母源抗体的SPF鸡胚(B组),并连续传代。其中A组再分为4 个独立的传代系列A1-4,B组再分为2 个独立传代系列B1-2。在每个传代系列,分别对第10,20,30,40,50 代病毒的HA基因进行扩增克隆测序,并与原始病毒的序列比较。【结果】LG1株H9N2在没有抗体的鸡胚的传代过程中,仅发生少数碱基的不稳定随机变异,且多为无义突变。在2 个传代系列的10 个代次病毒,共出现了29 个位点变异,有义突变(NS)与无义突变(S)比值NS/S为1.42 。但在有抗体的鸡胚的传代过程中,发生了多个呈现稳定遗传的有义突变。在4 个传代系列的20 个代次病毒,共出现了45 个位点变异,有义突变(NS)与无义突变(S)比值NS/S为3.46。【结论】在鸡胚传代过程中母源抗体提供的免疫选择压确实能影响H9N2的HA基因的变异。同时表明,带有母源抗体的鸡胚是实验室条件下研究免疫选择压对病毒抗原性变异影响的一种有效的实验模型。  相似文献   

15.

Background

The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, “universal” vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.

Methodology/Principal Findings

In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.

Conclusion/Significance

Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.  相似文献   

16.
N-linked glycosylation attenuates H3N2 influenza viruses   总被引:1,自引:1,他引:1       下载免费PDF全文
Over the last four decades, H3N2 subtype influenza A viruses have gradually acquired additional potential sites for glycosylation within the globular head of the hemagglutinin (HA) protein. Here, we have examined the biological effect of additional glycosylation on the virulence of H3N2 influenza viruses. We created otherwise isogenic reassortant viruses by site-directed mutagenesis that contain additional potential sites for glycosylation and examined the effect on virulence in na?ve BALB/c, C57BL/6, and surfactant protein D (SP-D)-deficient mice. The introduction of additional sites was consistent with the sequence of acquisition in the globular head over the past 40 years, beginning with two sites in 1968 to the seven sites found in contemporary influenza viruses circulating in 2000. Decreased morbidity and mortality, as well as lower viral lung titers, were seen in mice as the level of potential glycosylation of the viruses increased. This correlated with decreased evidence of virus-mediated lung damage and increased in vitro inhibition of hemagglutination by SP-D. SP-D-deficient animals displayed an inverse pattern of disease, such that more highly glycosylated viruses elicited disease equivalent to or exceeding that of the wild type. We conclude from these data that increased glycosylation of influenza viruses results in decreased virulence, which is at least partly mediated by SP-D-induced clearance from the lung. The continued exploration of interactions between highly glycosylated viruses and surfactant proteins may lead to an improved understanding of the biology within the lung and strategies for viral control.  相似文献   

17.
The hemagglutinin (HA) of A/H3N2 pandemic influenza viruses (IAVs) of 1968 differed from its inferred avian precursor by eight amino acid substitutions. To determine their phenotypic effects, we studied recombinant variants of A/Hong Kong/1/1968 virus containing either human-type or avian-type amino acids in the corresponding positions of HA. The precursor HA displayed receptor binding profile and high conformational stability typical for duck IAVs. Substitutions Q226L and G228S, in addition to their known effects on receptor specificity and replication, marginally decreased HA stability. Substitutions R62I, D63N, D81N and N193S reduced HA binding avidity. Substitutions R62I, D81N and A144G promoted viral replication in human airway epithelial cultures. Analysis of HA sequences revealed that substitutions D63N and D81N accompanied by the addition of N-glycans represent common markers of avian H3 HA adaptation to mammals. Our results advance understanding of genotypic and phenotypic changes in IAV HA required for avian-to-human adaptation and pandemic emergence.  相似文献   

18.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

19.
In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号