共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of ionophore A23187 on calcium ion fluxes and alpha-adrenergic-agonist action in perfused rat liver.
下载免费PDF全文

The effect of ionophore A23187 on cellular Ca2+ fluxes, glycogenolysis and respiration was examined in perfused liver. At low extracellular Ca2+ concentrations (less than 4 microM), A23187 induced the mobilization of intracellular Ca2+ and stimulated the rate of glycogenolysis and respiration. As the extracellular Ca2+ concentration was elevated, biphasic cellular Ca2+ fluxes were observed, with Ca2+ uptake preceding Ca2+ efflux. Under these conditions, both the glycogenolytic response and the respiratory response also became biphasic, allowing the differentiation between the effects of extracellular and intracellular Ca2+. Under all conditions examined the rate of Ca2+ efflux induced by A23187 was much slower than the rate of phenylephrine-induced Ca2+ efflux, although the net amounts of Ca2+ effluxed were similar for both agents. The effect of A23187 on phenylephrine-induced Ca2+ fluxes, glycogenolysis and respiration is dependent on the extracellular Ca2+ concentration. At concentrations of less than 50 microM-Ca2+, A23187 only partially inhibited alpha-agonist action, whereas at 1.3 mM-Ca2+ almost total inhibition was observed. The action of A23187 at the cellular level is complex, dependent on the experimental conditions used, and shows both differences from and similarities to the hepatic action of alpha-adrenergic agonists. 相似文献
2.
Calcium ion fluxes induced by the action of alpha-adrenergic agonists in perfused rat liver. 总被引:1,自引:21,他引:1
下载免费PDF全文

Phenylephrine (2.0 microM) induces an alpha 1-receptor-mediated net efflux of Ca2+ from livers of fed rats perfused with medium containing physiological concentrations (1.3 mM) of Ca2+. The onset of efflux (7.1 +/- 0.5 s; n = 16) immediately precedes a stimulation of mitochondrial respiration and glycogenolysis. Maximal rates of efflux are observed between 35 s and 45 s after alpha-agonist administration; thereafter the rate decreases, to be no longer detectable after 3 min. Within seconds of terminating phenylephrine infusion, a net transient uptake of Ca2+ by the liver is observed. Similar effects were observed with vasopressin (1 m-unit/ml) and angiotensin (6 nM). Reducing the perfusate [Ca2+] from 1.3 mM to 10 microM had little effect on alpha-agonist-induced Ca2+ efflux, but abolished the subsequent Ca2+ re-uptake, and hence led to a net loss of 80-120 nmol of Ca2+/g of liver from the tissue. The administration at 5 min intervals of short pulses (90 s) of phenylephrine under these conditions resulted in diminishing amounts of Ca2+ efflux being detected, and these could be correlated with decreased rates of alpha-agonist-induced mitochondrial respiration and glucose output. An examination of the Ca2+ pool mobilized by alpha-adrenergic agonists revealed that a loss of Ca2+ from mitochondria and from a fraction enriched in microsomes accounts for all the Ca2+ efflux detected. It is proposed that the alpha-adrenergic agonists, vasopressin and angiotensin mobilize Ca2+ from the same readily depleted intracellular pool consisting predominantly of mitochondria and the endoplasmic reticulum, and that the hormone-induced enhanced rate of mitochondrial respiration and glycogenolysis is directly dependent on this mobilization. 相似文献
3.
4.
The passive transport of potassium in rat liver cells 总被引:1,自引:0,他引:1
5.
G Miotto R Venerando N Siliprandi 《Biochemical and biophysical research communications》1989,158(3):797-802
Isovaleryl-l-carnitine inhibits the proteolysis induced by amino acid deprivation in the perfused rat liver to an extent equivalent, or, below 0.4 mM, even greater than that previously found for 1-leucine (Ref. 1). Also the typical concentration-response curve previously found for leucine (Ref. 1) is mimicked by isovaleryl-l-carnitine. The maximum inhibition (approximately 50% of the control) occurred for both l-leucine and isovaleryl-l-carnitine above 0.8 mM. Only at these high concentrations also 1-carnitine and isobutyryl-l-carnitine exhibit a significant, albeit lower, degree of inhibition. The possible mechanism of this proteolysis inhibition is discussed. 相似文献
6.
7.
The action of alpha-adrenergic agonists on plasma-membrane calcium fluxes in perfused rat liver
下载免费PDF全文

The effect of alpha-adrenergic agonists on Ca2+ fluxes was examined in the perfused rat liver by using a combination of Ca2+-electrode and 45Ca2+-uptake techniques. We showed that net Ca2+ fluxes can be described by the activities of separate Ca2+-uptake and Ca2+-efflux components, and that alpha-adrenergic agonists modulate the activity of both components in a time-dependent manner. Under resting conditions, Ca2+-uptake and -efflux activities are balanced, resulting in Ca2+ cycling across the plasma membrane. The alpha-adrenergic agonists vasopressin and angiotensin, but not glucagon, stimulate the rate of both Ca2+ efflux and Ca2+ uptake. During the first 2-3 min of alpha-agonist administration the effect on the efflux component is the greater, the net effect being efflux of Ca2+ from the cell. After 3-4 min of phenylephrine treatment, net Ca2+ movements are essentially complete, however, the rate of Ca2+ cycling is significantly increased. After removal of the alpha-agonist a large stimulation of the rate of Ca2+ uptake leads to the net accumulation of Ca2+ by the cell. The potential role of these Ca2+ flux changes in the expression of alpha-adrenergic-agonist-mediated effects is discussed. 相似文献
8.
In the rat hepatocyte, the internalization and degradation of asialoglycoproteins and the secretion of plasma and biliary proteins require specific intracellular sorting of vesicles. To aid in the biochemical characterization of these different vesicular pathways, we examined the effects of the ionophore monensin on the uptake and degradation of 125I-asialoorosomucoid (ASOR) and on the secretion of plasma and biliary proteins by the in situ perfused rat liver. In control livers, 77% of injected 125I-ASOR was extracted on first pass; 93% of the extracted radioactivity was released back into the circulation (totally degraded and some intact ASOR was found); and approximately 2% was recovered in the bile, some of which was intact. Monensin treatment decreased first pass uptake of 125I-ASOR to 57% and abruptly blocked the release of radioactivity into the perfusate and the bile. When hepatic proteins were biosynthetically labeled with 3H-leucine, monensin treatment dramatically reduced and delayed the secretion of newly synthesized proteins into both the perfusate and the bile. In contrast with control livers, in which secretion of protein into the perfusate preceded secretion of protein into the bile, TCA-precipitable 3H-protein appeared in bile about 20 min before TCA-precipitable 3H-protein appeared in the perfusate in monensin-treated livers. Thus, monensin treatment in the perfused liver blocked the degradation of asialoglycoproteins and inhibited the secretion of plasma proteins but had less effect on biliary protein secretion. These data document physiologic effects of monensin in an intact organ and suggest that biochemical distinctions between different vesicular pathways exist in the rat hepatocyte. 相似文献
9.
To determine the effects of serum proteins on the biologic activity of estrogens, we perfused isolated livers from ovariectomized female rats with oxygenated Krebs-Henseleit-bicarbonate buffer (KHBB), with and without 4% human serum albumin (4% HSA), with and without added estrogens, or with charcoal-stripped human serum (CSHS) with and without added estradiol. At the end of the perfusions, the cytosolic and nuclear estrogen receptors were measured by an exchange assay. When added to KHBB, estradiol 10(-9) or 10(-8) M or estrone 10(-8) M did not cause any significant increase in the percent of receptors measured in the nucleus. When the livers were perfused with KHBB containing 4% HSA and estradiol 10(-9) to 10(-7) M or estrone 10(-8) M, there was an increase in nuclear receptors. Perfusion with estradiol 10(-8) M in CSHS resulted in significantly less receptor in the nucleus than after estradiol in KHBB plus 4% HSA. We conclude that the presence of 4% HSA in the perfusion medium increases the biologic activity of estradiol and estrone on the isolated rat liver, and this increase is inhibited in the presence of sex hormone-binding globulin. The exact mechanism by which HSA increases the biologic activity is uncertain, but may be due in part to better diffusion of estrogen through the liver. 相似文献
10.
11.
12.
13.
The alkaloid harmaline is known to affect various membrane transport systems. This study examines the action of the drug on the short-circuit current (I0) and on the oxidative metabolism (Jr) in the tracheal epithelium of the cow. In this tissue I0 corresponds to the sum of two active transports: Na+ is absorbed and Cl- is secreted by a process based on the activity of the Na+ pump. A well defined relationship has been previously demonstrated between these active transports and the rate of O2 consumption (Schoenenweid et al., 1984 b). Low concentrations of harmaline (10(-6) to 5.10(-6) M) induced a small stimulation of I0. In contrast, larger concentrations (between 5.10(-5) and 10(-3) M) yielded a dose-related inhibition of I0, with an apparent concentration yielding 50% of maximal effect of 7.1.10(-4) M and maximal effect approaching 100%. The action was fully reversible after removal of the drug. The measurements of the fluxes of 22Na and 36Cl revealed that harmaline at a concentration of 8.10(-4) M, which decreased the I0 by 74 +/- 1% (n = 23), diminished both Na+ and Cl- transports, by 81 and 52%, respectively. The time course of I0 decay following the administration of harmaline was made of three components, with half-times of 0.34, 2.2 and 15.2 min. The time course was not appreciably modified when Cl- secretion was abolished with furosemide. Although harmaline, 10(-3)M, inhibited markedly I0, it did not modify Jr significantly. In contrast, when K+ in the incubation solution was omitted, both Ji and Jr were lowered.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Gabrielle Jacklin Eler 《Chemico-biological interactions》2009,181(3):390-33
In the present study the metabolic actions of n-propyl gallate on hepatic gluconeogenesis, oxygen uptake and related parameters were investigated. Experiments were done in the isolated perfused rat liver. n-Propyl gallate inhibited gluconeogenesis and stimulated oxygen uptake at concentrations up to 200 μM. The inhibitory effects on lactate gluconeogenesis (ED50 86.4 μM) and alanine gluconeogenesis were considerably more pronounced than those on glycerol and fructose gluconeogenesis. n-Propyl gallate also stimulated oxygen uptake in both the mitochondrial (63%) and microsomal (37%) electron transport chains. The first one is due mainly to the oxidation of n-propanol, as a metabolite of the first step of n-propyl gallate transformation. The second one results from a direct stimulation of the microsomal electron transport chain. n-Propyl gallate inhibited pyruvate carboxylation (ED50 142.2 μM) in consequence of an inhibition of pyruvate transport into the mitochondria an effect not found for gallic acid. This is probably the main cause for glucose output inhibition. Secondary causes are (1) deviation of intermediates for the production of NADPH to be used in microsomal electron transport; (2) deviation of glucose 6-phosphate for glucuronidation reactions; (3) gluconeogenesis inhibition by n-propanol, produced intracellularly from n-propyl gallate. Inhibition of mitochondrial energy metabolism is not significant in the range up to 200 μM, as indicated by the very small effect on the cellular ATP levels (5% decreased). n-Propyl gallate can be considered a kind of metabolic effector, whose actions on the liver metabolism are relatively mild although they can become harmful for the organ and the whole organism at high doses and concentrations. 相似文献
15.
Changes in oxygen consumption induced by t-butyl hydroperoxide in perfused rat liver. Effect of free-radical scavengers.
下载免费PDF全文

The addition of t-butyl hydroperoxide to perfused rat liver elicited a biphasic effect on hepatic respiration. A rapid fall in liver oxygen consumption was initially observed, followed by a recovery phase leading to respiratory rates higher than the initial steady-state values of oxygen uptake. This overshoot in hepatic oxygen uptake was abolished by free-radical scavengers such as (+)-cyanidanol-3 or butylated hydroxyanisole at concentrations that did not alter mitochondrial respiration. (+)-Cyanidanol-3 was also able to facilitate the recovery of respiration, the diminution in the calculated rate of hydroperoxide utilization and the decrease in liver GSH content produced by two consecutive pulses of t-butyl hydroperoxide. It is suggested that the t-butyl hydroperoxide-induced overshoot in liver respiration is related to increased utilization of oxygen for lipid peroxidation as a consequence of free radicals produced in the scission of the hydroperoxide by cellular haemoproteins. 相似文献
16.
A study was made of the absorption of exogenous hydrocortisone and formation of its metabolites in isolated liver of intact and exposed rats in conditions of recirculating perfusion. It was shown that the absorption of the hormone by the liver of irradiated rats was greatly lowered but the content of most metabolites found in the perfused medium of irradiated liver increased as compared to the control. It is suggested that irradiation inhibits subsequent transformations of the hydrocortisone metabolism products. 相似文献
17.
Periportal and perivenous hepatocytes differ in their metabolism of blood glutamate (Glu). Uncertainty about the mechanisms of Glu blood-liver exchange led us to characterise, by paired-tracer dilution, a sodium-dependent dicarboxylate transporter (resembling system X-ag) in sinusoidal membranes of perfused rat liver (Vmax = 0.18 mumol Glu/g per min, Km = 0.29 mM Glu). Tracer Glu transport was depressed 65% after necrosis of perivenous hepatocytes by acute CCl4 treatment, indicating that X-ag transporter activity is located mainly in these cells, the sites of glutamine (Gln) synthesis from glutamate and ammonia. Modulation of Glu transport may influence the extent of hepatic Gln release. 相似文献
18.
Lester A. Reinke Frederick C. Kauffman Steven A. Belinsky Ronald G. Thurman 《Archives of biochemistry and biophysics》1983,225(1):313-319
The effect of potassium cyanide on p-nitroanisole O-demethylation in perfused rat livers has been examined. Cyanide (2 mm), an inhibitor of cytochrome oxidase, diminished p-nitroanisole O-demethylation by 50–75% in perfused livers from normal and phenobarbital-treated rats, but had much less effect on hepatic microsomal p-nitroanisole O-demethylation. The inhibition was also observed in livers where the activity of the pentose phosphate shunt was abolished by pretreatment with 6-aminonicotinamide. Cyanide infusion decreased hepatic ratios and cellular concentrations of glutamate, α-ketoglutarate, and isocitrate, but caused an increase in the ratio. Rates of NADPH generation via the pentose phosphate shunt were unchanged by cyanide, and hepatic concentrations of glucose 6-phosphate were markedly increased by cyanide. Thus, inhibition of p-nitroanisole metabolism could not be explained solely by a direct interaction of cyanide with mixed-function oxidases or diminished NADPH generation via the pentose cycle. These data indicate that cyanide inhibits mixed-function oxidation in intact cells by diminishing the generation of NADPH from sources other than the pentose cycle. Further, these data are consistent with the hypothesis that some NADPH for mixed-function oxidation arises from cyanidesensitive mitochondrial sources. 相似文献
19.
Liver mitochondria were exposed in vitro at 30°C to microwave radiation (2.45 GHz) during the following states of respiraton: resting, state 1; substrate dependent, state 2; ADP stimulated, state 3; and ADP depleted, state 4. At 10 or 100 mW/g, with succinate as substrate, no effect of exposure was observed on states 1–4 or the respiratory control index (state 3/state 4) of either tightly or loosely coupled mitochondria. When glutamate was used as substrate, no effects were observed at 10 mW/g. However, in the loosely coupled mitochondria the 100 mW/g exposure produced an increase in states 2 and 4 and a decrease in the respiratory control index. The results suggest that the function of loosely coupled mitochondria can be affected at high power levels of microwave radiation. 相似文献