首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel leads to liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar leads to hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel leads to liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the delta H values becomes 7.1 kcal X mol-1 as compared to 8.2 kcal X mol-1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (delta H = 3.1 kcal X mol-1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (-13.5 degrees C in the presence of 20,S-OH cholesterol). The delta H of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar leads to hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The delta H of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3 beta- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ratio, 1:1) monomolecular film exhibits a transition at approx. 103 A2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The molecular organization of sterols in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 37 degrees C is examined by utilizing the fluorescent analogue of cholesterol cholesta-5,7,9-trien-3 beta-ol (cholestatrienol). (1) Cholestatrienol is shown to be indistinguishable from native cholesterol in terms of its ability to condense POPC, as determined by (i) pressure/area studies of mixed-lipid monolayers and (ii) its ability to increase the order of POPC bilayers (determined by electron spin resonance studies) whether on its own or admixed with cholesterol at various ratios. (2) By analysis of the perturbation of the absorption spectra, cholestatrienol was found to be freely miscible in aggregates of cholesterol in buffer. In contrast, a lack of any detectable direct interaction of the sterol molecules in POPC bilayers was detected. (3) Fluorescence intensity and lifetime measurements of POPC/sterol (1:1 mol/mol) at various cholesterol/cholestratrienol molar ratios (0.5:1 up to 1:1 cholestatrienol/POPC) confirmed that sterol molecules in the membrane matrix were not associated to any great degree. (4) A quantitative estimate of how close sterol molecules approach each other in the membrane matrix was evaluated from the concentration dependence of the steady-state depolarization of fluorescence and was found to be 10.6 A. From geometrical considerations, the sterol/phospholipid phase at 1:1 mol/mol is depicted as each sterol having four POPC molecules as nearest neighbors. We term this arrangement of the lipid matrix an "ordered bimolecular mesomorphic lattice". (5) The concentration dependence of depolarization of fluorescence of cholestatrienol in POPC liposomes in the absence of cholesterol yielded results that were consistent with the cholestatrienol molecules being homogeneously dispersed throughout the phospholipid phase at sterol/POPC ratios of less than 1:1. (6) From qualitative calculations of the van der Walls' hydrophobic interactions of the lipid species, the phospholipid condensing effect of cholesterol is postulated to arise from increased interpenetration of the flexible methylene segments of the acyl chains, as a direct result of their greater mutual attraction compared to their attraction for neighboring sterol molecules. (7) The interdependence of the ordered bimolecular mesomorphic lattice and the acyl chain condensation is discussed in an effort to understand the ability of cholesterol to modulate the physical and mechanical properties of biological membranes.  相似文献   

3.
If the biological conversion of cholest-7-en-3beta-ol (I) into cholesterol (IV) occurred thorugh the intermediacy of cholest-7-ene-3beta,5alpha-diol (II) then the factor(s) adversely affecting the convwesion of the 5alpha-hydroxy sterol (II) into cholesterol must at least equally adversely affect the formation of cholesterol from cholest-7-en-3beta-ol. By using partial denaturation techniquws and dual-labelled precursors it was shown that the enzyme system responsible for the conversion of the 5alpha-hydroxy sterol (II) into cholesterol denatured faster than that for the corresponding conversion from cholest-7-en-3beta-ol (I).  相似文献   

4.
Cells acquire cholesterol either by de novo synthesis in the endoplasmic reticulum or by internalization of cholesterol-containing lipoproteins, particularly low density lipoprotein (LDL), via receptor-mediated endocytosis. The inherited disorder Niemann-Pick type C (NPC), in which abnormal LDL-cholesterol trafficking from the endo/lysosomal compartment leads to substantial cholesterol and glycolipid accumulation in lysosomes, is caused by defects in either of two genes that encode for proteins designated as NPC1 and NPC2. NPC2 is a small intralysosomal protein that has been characterized biochemically as a cholesterol binding protein. We determined the rate and mechanism by which NPC2 delivers cholesterol to model phospholipid membranes. A fluorescence dequenching assay was used to monitor the kinetics of cholesterol transfer from the protein to membranes. The endogenous tryptophan fluorescence of the NPC2 was quenched upon binding of cholesterol, and the subsequent addition of acceptor vesicles resulted in dequenching of the tryptophan signal, enabling the monitoring of cholesterol transfer to membranes. The rates of cholesterol transfer were evaluated as a function of acceptor vesicle concentration, acceptor vesicle phospholipid headgroup composition, and aqueous phase properties. The results suggest that NPC2 rapidly transports cholesterol to phospholipid vesicles via a collisional mechanism which involves a direct interaction with the acceptor membrane. Transfer of cholesterol to membranes is faster in an acidic environment and is greatly enhanced by the presence of the unique lysosomal/late endosomal phospholipid lyso-bisphosphatidic acid (LBPA) (also known as bismonoacylglycerol phosphate). Finally, we found that the rate of transfer of cholesterol from vesicles to NPC2 was dramatically increased by the presence of lyso-bisphosphatidic acid in the donor vesicles. These results support a role for the NPC2 protein in the egress of LDL derived cholesterol out of the endosomal/lysosomal compartment.  相似文献   

5.
6.
Experimental data that define conditions under which cholesterol crystallites form in cholesterol/phospholipid model membranes are reviewed. Structural features of the phospholipids that determine cholesterol crystallization include the length and degree of unsaturation of the acyl chains, the presence of charge on the headgroups and interheadgroup hydrogen bonds.  相似文献   

7.
Experimental data that define conditions under which cholesterol crystallites form in cholesterol/phospholipid model membranes are reviewed. Structural features of the phospholipids that determine cholesterol crystallization include the length and degree of unsaturation of the acyl chains, the presence of charge on the headgroups and interheadgroup hydrogen bonds.  相似文献   

8.
This paper reports the detection and identification of phenolic metabolites (C6-C3 and C6-C1 compounds) in Cocos nucifera. An HPLC/UV system was used to analyze the soluble and wall-associated phenolics in mesocarp and leaf tissues of C. nucifera. Alkaline hydrolysis of the cell wall material of the mesocarpic and leaf tissues yielded 4-hydroxybenzoic acid as the major phenolic compound. Other phenolic acids identified were ferulic acid, 4-coumaric acid, 4-hydroxybenzaldehyde and vanillic acid. No significant qualitative differences in composition were observed between leaf and mesocarp, but there were quantitative variations in the metabolite levels.  相似文献   

9.
Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately leading to membrane damage and β-cell death. Here, we used variants of the hIAPP1–19 fragment and model membranes of phosphatidylcholine and phosphatidylserine (7:3, molar ratio) to examine the role of this disulfide in membrane interactions. We found that the disulfide bond has a minor effect on membrane insertion properties and peptide conformational behavior, as studied by monolayer techniques, 2H NMR, ThT-fluorescence, membrane leakage, and CD spectroscopy. The results suggest that the disulfide bond does not play a significant role in hIAPP–membrane interactions. Hence, the fact that this bond is conserved is most likely related exclusively to the biological activity of IAPP as a hormone.  相似文献   

10.
The role of cholesterol in lipid membranes   总被引:5,自引:0,他引:5  
  相似文献   

11.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel → liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar → hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel → liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the ΔH values becomes 7.1 kcal · mol?1 as compared to 8.2 kcal · mol?1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (ΔH = 3.1 kcal · mol?1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (?13.5°C in the presence of 20,S-OH cholesterol). The ΔH of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar → hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The ΔH of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3β- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ration, 1:1) monomolecular film exhibits a transition at approx. 103 Å2, corresponding to the area of revolution of the sterol nucleus. This remarkable property, due probably to the existence of a kink between the side-chain and the long axis of the steroid nucleus, might explain the smaller effect of this sterol on the melting transition of either PC or PE systems.  相似文献   

12.
The dehydrogenation reaction of cholest-7-en-3beta-ol (I) to cholesta-5,7-dien-3beta-ol (II) in the presence of NADH was studied in rat liver microsomes and in microsomal acetone powder preparations, using [3alpha-3H]cholest-7-en-3beta-ol. It was found that the reaction was inhibited by menadione, adenosine diphosphate, potassium ferricyanide, and cytochrome c while p-cresol had no effect. These results indicated the participation of a microsomal electron transport system in the dehydrogenation of cholest-7-en-3beta-ol. The conversion of cholest-7-en-3beta-ol to cholesta-5,7-dien-3beta-ol was also observed in the absence of NADH when ascorbic acid was included in the incubation mixture. However, the ascorbic acid-catalyzed dehydrogenation was not inhibited by potassium ferricyanide. Immunological evidence that microsomal cytochrome b5 is involved in the dehydrogenation of (I) to (II) was obtained. Antibodies specific for rat liver microsomal cytochrome b5 were elicited in rabbits. The anticytochrome b5 immunoglobulin fraction inhibited rat liver microsomal NADH-cytochrome c reductase but not NADPH-cytochrome c reductase. Also, the extent of reduction of cytochrome b5 was not affected by the antibodies. The conversion of (I) to (II) by rat liver microsomes was inhibited (73%) by anticytochrome b5 immunoglobulin at a ratio of microsomal protein:immunoglobulin of 1:5.6. These results are consistent with the participation of microsomal cytochrome b5 in the introduction of the C-5 double bond in cholesterol biosynthesis. A close analogy of the microsomal dehydrogenation of fatty acids and of cholest-7-en-3beta-ol is apparent and this suggests a possible similarity in the mechanisms of the two reactions.  相似文献   

13.
6-Photocholesterol, a new photoactivatable analog of cholesterol in which a diazirine functionality replaces the 5,6-double bond in the steroid nucleus, was used recently to identify cholesterol-binding proteins in neuroendocrine cells [Thiele, C., Hannah, M.J., Farenholz, F. and Huttner, W.B. (2000) Nat. Cell Biol. 2, 42–49], to track the distribution and transport of cholesterol in Caenorhabditis elegans [Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F.R. and Kurzchalia, T.V. (2001) Mol. Biol. Cell 12, 1725–1736], and to probe lipid–protein interactions in oligodendrocytes [Simons, M., Kramer, E.M., Thiele, C., Stoffel, W. and Trotter, J. (2000) J. Cell Biol. 151, 143–154]. To determine whether 6-photocholesterol is a faithful mimetic of cholesterol we analyzed the ability of this probe, under conditions in which it is not photoactivated to a carbene, to substitute for cholesterol in two unrelated assays: (1) to condense 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine monomolecular films and (2) to mediate the fusion of two alphaviruses (Semliki Forest and Sindbis) with liposomes. The results suggest that this analog is a suitable photoprobe of cholesterol.  相似文献   

14.
The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy. Thus, delta F obtains a minimum at dP-doL approximately 0. These qualitative interpretations are supported by detailed numerical calculations of the various contributions to the interaction free energy, and of chain conformational properties. The range of the perturbation of lipid order extends typically over few molecular diameters. A rather detailed comparison of our approach to other models is provided in the discussion.  相似文献   

15.
Phosphatidylcholine and cholesterol interactions in model membranes   总被引:1,自引:0,他引:1  
Various phosphatidylcholines differing either in the stereochemistry around their chiral center or in the position of a cis double bond along the acyl chains were synthesized in order to study critical contact regions in the phospholipid molecule with adjacent cholesterol in model membranes. Microviscosities calculated from fluorescence depolarization of diphenylhexatriene and chain order from spin label studies were measured to monitor physical membrane properties. The enhancing effect of cholesterol on the microviscosity of membranes containing phosphatidylcholines with comparable acyl chain length was largest when the two acyl chains were saturated and smallest when both were unsaturated. Membranes prepared from phosphatidylcholines having a single cis double bond at different positions along the sn-2 acyl chain showed roughly the same changes of microviscosity or chain order upon incorporation of cholesterol. No discrimination was evident in the interaction between cholesterol and enantiomeric phosphatidylcholines or between the enantiomeric phosphatidylcholine molecules themselves. We conclude that the rigidifying effect of cholesterol in membranes does not depend on specific sites of interaction and that with respect to physical membrane properties phosphatidylcholine behaves as an achiral molecule.  相似文献   

16.
Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion. We use fluorescence spectroscopy to investigate the interactions of membrane-free LPS from intestinal gram-negative organisms with cholesterol-containing model membranes and with T-lymphocytes. LPS preparations from Klebsiella pneumoniae and Salmonella enterica were found to bind preferentially to mixed lipid membranes by comparison to pure PC bilayers. The same was observed for LPS from the symbiote Escherichia coli but with an order of magnitude higher dissociation constant. Insertion of LPS into model membranes confirmed the preference for sphimgomyelin/cholesterol-containing systems. LPS insertion into Jurkat T-lymphocyte membranes reveals that they have a significantly greater LPS-binding capacity by comparison to methyl-β-cyclodextrin cholesterol-depleted lymphocyte membranes, albeit at slightly lower binding rates.  相似文献   

17.
Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core.  相似文献   

18.
The photoreceptor rod outer segment (ROS) provides a unique system in which to investigate the role of cholesterol, an essential membrane constituent of most animal cells. The ROS is responsible for the initial events of vision at low light levels. It consists of a stack of disk membranes surrounded by the plasma membrane. Light capture occurs in the outer segment disk membranes that contain the photopigment, rhodopsin. These membranes originate from evaginations of the plasma membrane at the base of the outer segment. The new disks separate from the plasma membrane and progressively move up the length of the ROS over the course of several days. Thus the role of cholesterol can be evaluated in two distinct membranes. Furthermore, because the disk membranes vary in age it can also be investigated in a membrane as a function of the membrane age. The plasma membrane is enriched in cholesterol and in saturated fatty acids species relative to the disk membrane. The newly formed disk membranes have 6-fold more cholesterol than disks at the apical tip of the ROS. The partitioning of cholesterol out of disk membranes as they age and are apically displaced is consistent with the high PE content of disk membranes relative to the plasma membrane. The cholesterol composition of membranes has profound consequences on the major protein, rhodopsin. Biophysical studies in both model membranes and in native membranes have demonstrated that cholesterol can modulate the activity of rhodopsin by altering the membrane hydrocarbon environment. These studies suggest that mature disk membranes initiate the visual signal cascade more effectively than the newly synthesized, high cholesterol basal disks. Although rhodopsin is also the major protein of the plasma membrane, the high membrane cholesterol content inhibits rhodopsin participation in the visual transduction cascade. In addition to its effect on the hydrocarbon region, cholesterol may interact directly with rhodopsin. While high cholesterol inhibits rhodopsin activation, it also stabilizes the protein to denaturation. Therefore the disk membrane must perform a balancing act providing sufficient cholesterol to confer stability but without making the membrane too restrictive to receptor activation. Within a given disk membrane, it is likely that cholesterol exhibits an asymmetric distribution between the inner and outer bilayer leaflets. Furthermore, there is some evidence of cholesterol microdomains in the disk membranes. The availability of the disk protein, rom-1 may be sensitive to membrane cholesterol. The effects exerted by cholesterol on rhodopsin function have far-reaching implications for the study of G-protein coupled receptors as a whole. These studies show that the function of a membrane receptor can be modulated by modification of the lipid bilayer, particularly cholesterol. This provides a powerful means of fine-tuning the activity of a membrane protein without resorting to turnover of the protein or protein modification.  相似文献   

19.
Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol   总被引:23,自引:0,他引:23  
Oldfield E  Chapman D 《FEBS letters》1972,23(3):285-297
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号