首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A new ligand, 6-hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone (L), was prepared by condensation of 6-hydroxy-3-carbaldehyde chromone (CDC) with 2-hydroxy benzoyl hydrazine. Its four rare earth complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimetry/differential thermal analysis (TG-DTA), UV-vis spectra, fluorescence spectra, and IR spectra. The general formula of the complexes is [LnL2.(NO3)2].NO3 [Ln=La(1), Sm(2), Dy(3), Eu(4)]. Spectrometric titration, ethidium bromide displacement experiments, and viscosity measurements indicate that Eu(III) complex and ligand, especially the Eu(III) complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of Eu(III) complex and ligand with DNA were 3.55 x 10(6) and 1.33 x 10(6)M(-1) through fluorescence titration data, respectively. In addition, the suppression ratio for O2-* and OH* of the ligand and its complexes was studied by spectrophotometric methods. The experimental results show that La (1), Sm (2), and Eu (4) complexes are better effective inhibitor for OH* than that of mannitol. It indicates that the complexes have the activity to suppress O2-* and OH* and exhibit more effective antioxidants than ligand alone.  相似文献   

2.
A new family of tridentate ligands PhimpH (2-((2-phenyl-2-(pyridin-2-yl)hydazono)methyl)phenol), N-PhimpH (2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)napthalen-1-ol), Me-PhimpH (2-(1-(2-phenyl-2-(pyridine-2-yl)hydrazono)ethyl)phenol) have been synthesized and characterized. The ligands PhimpH and N-PhimpH after deprotonation react with manganese(II) and manganese(III) starting materials affording [Mn(Phimp)2] (1), [Mn(Phimp)2](ClO4) (2), [Mn(N-Phimp)2] (3), [Mn(N-Phimp)2](ClO4) (4). Complexes [Mn(Phimp)2] (1) and [Mn(N-Phimp)2] (3) convert to [Mn(Phimp)2]+ (cation of 2) and [Mn(N-Phimp)2]+ (cation of 4) respectively upon oxidation. Ligand Me-PhimpH stabilized only manganese(III) centre resulting [Mn(Me-Phimp)2](ClO4) (5). The molecular structures of [Mn(Phimp)2], 1 and [Mn(Phimp)2](ClO4), 2 were determined by single crystal X-ray diffraction. X-ray crystal structures of 1 and 2 have revealed the presence of distorted octahedral MnN4O2 coordination sphere having meridionally spanning ligands. Electrochemical studies for the complexes showed Mn(II)/Mn(III), (E1/2 = 0.14-0.40 V) and Mn(III)/Mn(IV), (E1/2 = 0.80-1.06 V) couples vs. Ag/AgCl. The redox properties were exploited to examine superoxide dismutase (SOD) activity using Mn(II)/Mn(III) couple. The complexes 1, 2, 4 and 5 have been revealed to catalyze effectively the dismutation of superoxide () in xanthine-xanthine oxidase-nitro blue tetrazolium assay and IC50 values were found to be 0.29, 0.39, 1.12 and 0.76 μM respectively. DNA interaction studies with complex 2 showed binding of DNA in a non-intercalative pathway. Complexes 1, 2 and 4 exhibited nuclease activity in presence of H2O2 and inhibition of activity was noted in presence of KI.  相似文献   

3.
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.  相似文献   

4.
The neutral mononuclear Ln(III) complexes (Ln = La, Sm) with 7-methoxychrom-one-3-carbaldehyde-isonicotinoyl hydrazone ligand (L) have been synthesized, characterized and investigated their interactions with calf-thymus DNA. The results show that the binding affinity of the La(III) complex is stronger than that of the Sm(III) complex and that of the ligand (L). Furthermore, the antioxidant activities of the ligand (L) and its Ln(III) complexes (Ln = La, Sm) were studied in detail.  相似文献   

5.
The trianionic heptadentate ligand, (Z)-3-(5′-chlorosalicylhydrazinocarbonyl) propenoic acid, has been synthesized and reacted with FeCl3·6H2O, to produce the complex [FeIII6(C12H8N2O5Cl)6(H2O)4(CH3OH)2]·8H2O·4CH3OH. In the self-assembly process the ligand was esterified and transferred into (Z)-methyl 3-(5′-chlorosalicylhydrazinocarbonyl) propenoate. In the crystal structure, the neutral Fe(III) complex contain a 18-membered metallacrown ring consisting of six Fe(III) and six trianionic ligands. The 18-membered metallacrown ring is formed by the succession of six structural moieties of the type [Fe(III)-N-N]. Due to the meridional coordination of the ligands to the Fe3+ ions, the ligands enforce the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The metallacrown can be treated with SnCl2 or Zn powder to obtain purified ester.  相似文献   

6.
A novel macrocyclic hexanuclear iron(III) 18-azametallacrown-6 compound, [Fe6(C9H7N2O3)6(CH3OH)6]·8CH3OH·2H2O, has been prepared using a trianionic pentadentate ligand N-acetylsalicylhydrazide (ashz3−) and characterized by X-ray diffraction. Due to the meridional coordination of the ligand to the Fe3+ ion, the ligand enforces the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The disc-shaped hexanuclear ring shows about 6.20 Å in diameter at entrance, about 9.31 Å at its largest diameter at the center of the cavity, respectively. There are many kinds of intramolecular and intermolecular hydrogen bonds in the title compound. The OH?O hydrogen bond distances range from 2.609(5)-2.901(5) Å. The magnetic susceptibility (4-275K) study indicates antiferromagnetic exchange interactions between the adjacent Fe3+ ions around the ring.  相似文献   

7.
Reaction of 4,6-dimethylpyrimidine-2(1H)-thione (Me2pymSH) with mer-[ReOCl3(Me2S)(OPPh3)] synthon in 1:1 molar ratio in refluxing acetone, results in the replacement of the Me2S ligand to form the mer-[ReOCl3(Me2pymSH)(OPPh3)] species. X-ray diffraction shows that the structure of the title compound consists of monomeric units with a distorted octahedral coordination around the rhenium(V) centre which includes the axial ReO and Re---OPPh3 bonds, and in which three Cl ions and a S-monodentate neutral Me2pymSH ligand act as equatorial ligands. The compound was also characterised using electrochemical measurements and UV–Vis–NIR and IR spectroscopy.  相似文献   

8.
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH2) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH2) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [CoIII(dmoInH)2]Cl·2H2O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [CoIII(dmoInH)2]Cl·2H2O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [CoIII(dmoBH)2]Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH2, compared to dmoBH2, in the solid state. Comparing the structure of the [CoIII(dmoInH)2]Cl·2H2O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.  相似文献   

9.
A series of organotin(IV) complexes with Schiff base ligand pyruvic acid 3-hydroxy-2-naphthoyl hydrazone [R2SnLY]2, L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = CH3OH (1), R = n-C4H9, Y = N (2), R = PhCH2 (3), R = Ph, Y = CH3OH (4), R = Me, (5) and [R3SnLY], L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = H2O, (6), R = Ph (7), R = Me (8) have been synthesized. These complexes have been characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal and molecular structure of complexes 1, 2 and 6 have been determined by X-ray single crystal diffraction. Results showed that complex 1 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. The complex 2 has a monoclinic structure and the central tin atom is rendered six-coordinate in octahedrally configuration with a planar of SnO3N unit and two apical aryl C atoms. And the whole structure consists of molecular units connected by weak intermolecular Sn?N and O-H?N interactions. In the complex 6, the central tin atom is five-coordinate in distorted trigonal-bipyramidal geometry.  相似文献   

10.
[VIVO(acac)2] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [VVO(L1)(OCH3)(py)] (1) and [VVO(L2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [VVO(L3/L4)(OCH3)]2 complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their 1H NMR spectra. These quaternary VO3+ complexes are converted to the corresponding -complexes simply on refluxing them in acetone and to the -complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [VVO(L)(hq)] complexes in CHCl3.  相似文献   

11.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

12.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened.  相似文献   

13.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

14.
The reaction of zinc(II) chloride, cadmium(II) chloride and bromide with 3-thiophene aldehyde thiosemicarbazone leads to the formation of a series of new complexes. They have been characterized by spectroscopic studies: infrared, 1H NMR, and electronic spectra. The crystal structures of the compound [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2] have been determined by X-ray diffraction methods. For the complexes [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2], the central ion is coordinated through the sulfur, and for the complexes [CdCl2(3TTSCH)], [CdBr2(3TTSCH)] the ion is coordinated through the sulfur as well as azomethine nitrogen atom of the thiosemicarbazone. In addition, fungistatic and bacteriostatic activities of both ligand and complexes have been evaluated. Cadmium(II) complexes have shown the most significant activities.  相似文献   

15.
Four 2-acetylpyridine 4N-alkyl thiosemicarbazones, and their Ga(III) and In(III) complexes have been prepared and characterised by fluorescence, UV-Vis, IR, 1H and 13C NMR spectroscopy, mass spectrometry and X-ray crystallographic analysis. Comparison of the crystal structures gave an insight into the nature of the complexes formed, demonstrating a preference for [ML2]+ type complexes with gallium and [MLX3] species with indium. Stability studies on two candidates indicated that complex [InL3Cl2MeOH] was stable to chemical degradation for prolonged periods in human serum, giving this complex potential for further biological evaluation.  相似文献   

16.
The complex [Ru(SB12H11)(NH3)5]·2H2O has been prepared by the reaction of Cs2B12H11SH with [RuCl(NH3)5]Cl2 in aqueous solution. The complex represents the first reported example of the borocaptate anion acting as a ligand. The structure of the complex has been determined by single crystal X-ray diffraction analysis. The crystal parameters are monoclinic, space group P21/c, A = 8.056(1), B = 14.240(2), C = 15.172(2) Å, β=98.48° and Z = 4. The ruthenium atom has a distorted octahedral coordination. The distortion is probably due to the high (3) charge and the large bulk of the borocaptate ligand. These features can also be observed in the spectroscopic properties of the complex.  相似文献   

17.
The synthesis and characterization of rare-earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) thiocyanate adducts with tripiperidinophosphine oxide (tpppO) with general formula (RE)(SCN)3(tpppO)3 are reported. Conductance measurements in acetonitrile indicate the non-electrolytic nature of the complexes. Infrared absorption spectra evidence that the SCN ion coordinates through the nitrogen atom (isothiocyanate form) and that tpppO coordinates through the phosphoryl oxygen. X-ray powder patterns suggest the existence of three different crystal forms: (1) La; (2) an isomorphous series including Ce, Nd and Pr; and (3) another isomorphous series, including Sm, Gd, Eu, Ho, Er, Tb, Lu and Y. The visible spectra of the Nd adduct and the calculated parameters β = 0.98, b1/2 = 0.072 and δ = 1.06 indicate that the metal-ligand bonds are essentially electrostactic. The emission spectra of the Eu compound showed 5D0 → 7FJ bands (J = 0, 1, 2), suggesting a C3v symmetry for the coordination polyhedron. The lifetime of the 5D0 state is 1.28 ms. The emission spectra of the Tb complex presented 5D4 → 7FJ bands (J = 4, 5, 6) and the Dy complex showed the 4F9/2 → 6H13/2 band. The structure of the Pr complex showed that the coordination polyhedron is a trigonal antiprism, with the isothiocyanate anions in one base and three tpppO ligands in the other. Thermal analyses (TG-DTG) were carried out for the Ce, Nd and Gd adducts. Mass losses start between 250 and 334 °C. The final residues at 1300 °C are the corresponding phosphates.  相似文献   

18.
New water-soluble rhodium(III) complexes with a tacn (1,4,7-triazacyclononane) and a bpy (2,2-bipyridine) supporting ligands were synthesized. The reaction of [RhIII(tacn)Cl3] (1) with equimolar amount of bpy and two equivalents of AgNO3 in H2O at reflux for 10 h gave a water-soluble chloro complex [RhIII(tacn)(bpy)Cl](NO3)2 {2(NO3)2}. Complex 2(NO3)2 was treated with equimolar amount of AgNO3 in H2O at reflux for 10 h to give a water-soluble nitrato complex [RhIII(tacn)(bpy)(NO3)](NO3)2 {3(NO3)2}. Water-solubility of 3 with NO3 − ligand (46.5 mg/mL) is high compared with that of 2 with Cl ligand (14.5 mg/mL) under the same conditions (at pH 7.0 at 25 °C). The structures of 2 and 3 were unequivocally determined by X-ray analysis. Their structures in H2O were also examined by 1H NMR, IR, and electrospray ionization mass spectrometry (ESI-MS).  相似文献   

19.
The novel Pd(II) complex, [Pd(2)(micro-bzta)(4)].1.5DMSO (where bzta=benzothiazole-2-thiolate) has been synthesized and structurally characterized by element analysis, IR and single-crystal X-ray diffractometry. In the binuclear complex, two palladium(II) are bridged by four deprotonated benzothiazole-2-thialate in a head to tail disposition and the distance of the two Pd(II) is 2.747 A. Three-dimensional structure of the complex was constructed though S...S (3.339 A) weak interaction and pi...pi stack. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by absorption and fluorescence spectra. The results indicate that the complex bind to FS-DNA in an intercalative mode and the intrinsic binding constant K of the title complex with FS-DNA is about 1.2 x 10(4)M(-1). Gel electrophoresis assay demonstrates the ability of the complex to cleave the pUC19 plasmid DNA.  相似文献   

20.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号