首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of solvent exchange and milling on the solid structure of cellulose were investigated, using small- and wide-angle X-ray scattering and solid-state NMR. The solvent exchange facilitated the dissolution of cellulose in LiCl/DMAc with no change of the crystalline structure of cellulose. In contrast, the milling never facilitated the dissolution of cellulose, though the crystalline structure was almost destroyed. These facts show that the crystalline structure of cellulose hardly affects the dissolution in LiCl/DMAc. The fractal dimensions determined by the small-angle X-ray scattering measurements were increased by the solvent exchange, suggesting that the aggregation state of the cellulose microfibril is affected. It was also suggested by the NMR (1)H spin relaxation time measurements that the solvent exchange enhances the molecular mobility of cellulose and shortens the characteristic length along the microfibril, which allows easier access of the solvent molecule to cellulose.  相似文献   

2.
We report the acetylation of celluloses from sisal (untreated and alkali treated) and cotton linters (alkali treated), under homogeneous solution conditions, using DMAc/LiCl as solvent system. Our target was to evaluate the effects of cellulose dissolution and reactions conditions on the product properties. The products were characterized in terms of degree of substitution (DS) by 1H NMR, and molar weight distribution (MWD) by size exclusion chromatography. Changes in the DS of the products were correlated with reaction conditions and solution properties. It was found that the dissolution of celluloses and degree of substitution of cellulose derivatives depends on a fine adjustment of the dissolution/derivatization conditions, as well as on the origin (sisal or linters) of celluloses.  相似文献   

3.
The present work deals with the effects of structural variables of celluloses on their dissolution in the solvent system LiCl/N,N-dimethylacetamide, LiCl/DMAc. Celluloses from fast growing sources (sisal and linters), as well as microcrystalline cellulose (avicel PH-101) were studied. The following structural variables were investigated: index of crystallinity, I(c); crystallite size; polymer porosity; and degree of polymerization determined by viscosity, DPv. Mercerization of fibrous celluloses was found to decrease DPv, I(c), the specific surface area, and the ratio pore volume/radius. The relevance of the structural properties of cellulose to its dissolution is discussed. Rate constants and activation parameters of cellulose decrystallization, prior to its solubilization, have been determined under nonisothermal conditions. The kinetic parameters calculated showed that dissolution is accompanied with small, negative enthalpy and a large, negative entropy of activation.  相似文献   

4.
Celluloses from different origins were dissolved stepwise in N,N-dimethylacetamide/lithium chloride (9% v/w; DMAc/LiCl) with the aim to study the time course of the dissolution process, completeness of dissolution in the dissolved fractions, possible discrimination effects, and differences between the celluloses. Cellulosic pulps from both annual plants and different wood species were analyzed. The obtained fractions were subject to gel permeation chromatography (GPC) with multiple detection to monitor the development of molecular mass distribution (MMD), molecular mass, and recovered mass. The dissolution behavior of accompanying xylans was followed by quantitative analysis of the uronic acids by fluorescence labeling--GPC. The morphological changes at the remaining fibers in the stepwise dissolution were addressed by SEM. The time needed to dissolve completely the cellulosic pulp differed from species to species, mainly between pulps from annual plants and pulps from wood. Annual plants generally needed much longer to dissolve completely. In the beginning of the dissolution, the dissolved fractions of annual plants showed a distinct discrimination effect because they were enriched in hemicellulose. By contrast, wood pulps dissolve fast and without distinct changes in the MMD of the dissolved fractions over time. Bagasse pulp is an exception to the observation for annual plants and rather resembled the behavior of wood celluloses. Prolonged dissolution times, as often practiced in cellulose GPC, do not lead to any improvements regarding the determination of molecular mass, MMD, and recovered mass of injected sample, so that the dissolution times required for reliable GPC analysis can be significantly shortened, which will be important for biorefinery analytics with high numbers of samples.  相似文献   

5.
Solution properties and molecular structure of tunicate cellulose (TC), an animal cellulose from Halocynthia roretzi, were investigated in terms of rheological and dilute solution properties. The solvent used is 8 wt % LiCl/1,3-dimethyl-2-imidazolidinone (DMI). A solution of dissolving pulp (DP), derived from plant, was also used for comparison. The weight-average molecular weight, Mw, and the limiting viscosity number, [eta], of the TC were evaluated to be 413 x 10(6) and 2645 mL/g, respectively. The TC solution showed the same concentration dependence of GN (GN=5.49 x 10(6)phiw(2.1)4 Pa; phiw: weight fraction of cellulose in solution; GN: plateau modulus) as the DP solution and, moreover, also as the solution of cotton linter (CC) in 8 wt % LiCl/N,N-dimethylacetamide (DMAc). This exponent of 2.1(4) indicates that network structure by entanglements was formed in these solutions. According to the theory of Fetters et al., moreover, such identity means that all of these celluloses have the identical chain structure though their biological origins are far different. On the other hand, the phiw-dependence of eta0-etas (eta0=zero shear rate viscosity of solution; etas=solvent viscosity) was different between the TC and the DP solution in the semidilute regime: the TC solution exhibited eta0-etas proportional, variant phiw(7.5) and the DP solution eta0-etas proportional, variant phiw4. According to the theory of Doi-Edwards, this exponent of 4 (the DP solution) indicates that the DP behaves as flexible polymers in the solution. In contrast, the dependence for the TC solution seems unexplainable on the basis of molecular theories. This difference probably signifies the difference in the relaxation process or mechanism in entanglement systems.  相似文献   

6.
利用氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)溶剂体系在微波控制条件下对稻秆纤维素进行溶解预处理以提高纤维素酶解糖化效率。考察了微波时间和微波强度对产糖量及还原糖转化率的影响。通过扫描电镜(SEM)和热重分析仪(TG)对预处理前后稻秆纤维素的微观形貌及热稳定性进行表征,并利用高效液相色谱仪(HPLC)对酶解糖液进行糖成分鉴定和含量分析。结果表明,微波加热能够有效促进LiCl/DMAc对稻秆纤维素的溶解。与原生稻秆相比,经微波-LiCl/DMAc法溶解后再生纤维素出现明显解聚,热分解温度由290℃降至220℃。在微波功率为385 W、加热溶解时间为7 min时,所得稻秆纤维素还原糖转化率由30.90%上升至98.67%;HPLC谱图表明,糖液中主要成分为葡萄糖和木糖,分别占所得还原糖总量的43.74%和48.55%。  相似文献   

7.
Rodin VV 《Biofizika》2005,50(2):223-230
Collagen samples from dog-fish egg case at different water content were studied by the 1H NMR relaxation method. The dependences of the proton spin-lattice and spin-spin relaxation rates on the concentration of water in hydrated native collagen were measured. The fractions of water protons of different mobility and their corresponding spin-spin and spin-lattice relaxation rates were determined in a multi-phase model of water protons in natural biopolymer-water systems. The correlation times were calculated as the characteristics of molecular motion in hydrated collagens with different content of absorbed water. The results obtained were compared with literature data of pulse NMR studies of molecular mobility in other collagen fibers.  相似文献   

8.
DMAc/LiCl has become a favored solvent in the analysis of polysaccharides. Although much is understood about its interaction with carbohydrate molecules, a great deal remains to be known in order for a comprehensive mechanism of dissolution to be discerned. These limitations, however, have not precluded the extended use of DMAc/LiCl in the study of chitin, cellulose, etc. This article reviews the theory of DMAc/LiCl as a solvent and new developments in this area, as well as the variety of applications which have been found for it.  相似文献   

9.
Attempts were made to enhance cellulose saccharification by cellulase using cellulose dissolution as a pretreatment step. Four cellulose dissolution agents, NaOH/Urea solution, N-methylmorpholine-N-oxide (NMMO), ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and 85% phosphoric acid were employed to dissolve cotton cellulose. In comparison with conventional cellulose pretreatment processes, the dissolution pretreatments were operated under a milder condition with temperature <130 °C and ambient pressure. The dissolved cellulose was easily regenerated in water. The regenerated celluloses exhibited a significant improvement (about 2.7- to 4.6-fold enhancement) on saccharification rate during 1st h reaction. After 72 h, the saccharification yield ranged from 87% to 96% for the regenerated celluloses while only around 23% could be achieved for the untreated cellulose. Even with high crystallinity, cellulose regenerated from phosphoric acid dissolution achieved the highest saccharification rates and yield probably due to its highest specific surface area and lowest degree of polymerization (DP).  相似文献   

10.
A detailed study of the interaction of chitin molecular species with the solvent system N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) allowed the development of a new method for chitin fractionation by coacervate extraction. The controlled increase of the extracting power of the solvent was carried out using slight modification of the solvent composition. Partial extractions of molecular species were done between coacervation and complete dissolution limits using different mixtures of DMAc/LiCl of increasing extracting power. Fractions were characterized in DMAc/LiCl 5% (w/w) by viscometry and size exclusion chromatography with refractive index and multi-angle laser light scattering detectors. Fractions obtained by coacervate extraction range from 80,000 to 710,000 g mol−1 with polydispersity index between 1.28 and 1.44. The Mark–Houwink–Sakurada equation constants a and K for chitin in DMAc/LiCl 5% (w/w) were found to be 0.95 and 7.6×10−5 dl g−1, respectively.  相似文献   

11.
S H Tsang  L S Kan 《Cell biophysics》1990,16(3):127-138
The nuclear magnetic resonance spin-lattice (T1) and spin-spin (T2) relaxation times are closely related to the molecular motions of the molecules in a liquid sample. T1 and T2 of human epidermal cells were measured at 300 MHz as functions of harvesting methods (i.e., scraping vs trypsinization) and age in culture. It was found that T1 and T2 values have smaller variances when the cell is harvested by trypsinization rather than scraping. The correlation coefficients for both T1 and T2, obtained from cells harvested by scraping. More importantly, this is the first report to monitor in vitro aging through relaxation times measurement. There is a significant increase in the values of T1 and T2 from the third to seventh passages. Human keratinocytes slowed down and even ceased to grow the seventh passage. Therefore, the cellular water molecules of human keratinocytes have higher mobility in a more differentiated state. The factors contributing to the change in relaxation times as cells progress toward senescence are discussed.  相似文献   

12.
An impulse method of nuclear magnetic resonance was used for measuring the times of spin-lattice relaxation in the rotating system of coordinates (RSC) for water molecules adsorbed on cottone cellulose. It has been shown that within the temperature region -10 divided by -40 degrees C the spin-lattice relaxation of water in RSC is conditioned by intermolecular interactions modulated with translation movement. The selfdiffusion coefficient of adsorbed water for the sample with 55% humidity at -10 degrees C is determined as 2.0.10(-9) cm2/s and decreases to 0.3.10(-9) cm2s at -40 degrees C, with activation energy of diffusion equalling 8.1 kcal/mol.  相似文献   

13.
Wang K  Yang HY  Xu F  Sun RC 《Bioresource technology》2011,102(6):4524-4529
This study aims to establish an efficient pretreatment process using cellulose-dissolution solvents to enhance the enzymatic saccharification. LiOH/urea, LiCl/DMAc, concentrated phosphoric acid, ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and N-methyl-morpholine-N-oxide (NMMO) were selected as the cellulose dissolution agents. Except the cellulosic sample regenerated from LiCl/DMAc system, all the other treated samples exhibited lower cellulose crystallinity and degree of polymerization (DP), and consequently, exhibited a significant enhancement on enzymatic hydrolysis kinetic. Ionic liquid pretreatment offered unique advantages in the hydrolysis rate in the first 10 h, probably due to the extensively structural transformation of cellulose from the crystalline to the amorphous region. Meanwhile, the regenerated cellulose from concentrated phosphoric acid almost completely consisted of cellulose II, and achieved the highest saccharification yield.  相似文献   

14.
The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures.  相似文献   

15.
The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures.  相似文献   

16.
Physiologically relevant molecular species of plasmenylcholine and phosphatidylcholine were synthesized and their molecular dynamics and interactions with cholesterol were compared by determination of salient proton spin-lattice relaxation times and apparent activation energies for 1H-NMR observable motion. The molecular dynamics of PA PhosCho (1-hexadecanoyl-2-eicosatetra-5',8',11',14'-enoyl-sn-glycero-3-pho sphocholine) in multiple regions of the bilayer. Furthermore, the fluidity gradient of PA PhosCho was larger than that of PA PlasCho as ascertained by 1H spin-lattice relaxation time measurements. Introduction of cholesterol into each bilayer resulted in disparate effects on the dynamics of each subclass including: (1) increased motional freedom in the polar head group of PA PlasCho without substantial alterations in the dynamics of the polar head group of PA PhosCho; and (2) increased immobilization of the membrane interior in PA PlasCho in comparison to PA PhosCho. Analysis of Arrhenius plots of T1 relaxation times demonstrated that the apparent activation energies for vinyl and bisallylic methylene proton NMR observable motion in PA PhosCho were greater than that in PA PlasCho. Thus, comparisons of spin-lattice relaxation times and apparent activation energies demonstrate that vesicles comprised of PA PlasCho and PA PhosCho possess differential molecular dynamics and distinct interactions with cholesterol. Collectively, these results underscore the significance of the conjoint presence of the vinyl ether linkage and arachidonic acid as an important determinant of membrane dynamics in specialized mammalian membranes.  相似文献   

17.
Three holocelluloses (i.e., cellulose and hemicellulose fractions) are prepared from softwood and hardwood by the Wise method. These holocelluloses completely dissolve in 8% lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) after an ethylenediamine (EDA) pretreatment. After diluting the holocellulose solutions to 1% LiCl/DMI, they are subjected to size-exclusion chromatography/multiangle laser-light scattering/photodiode array (SEC-MALLS-PDA) analysis. All holocelluloses exhibit bimodal molecular weight distributions primarily due to high-molecular-weight (HMW) cellulose and low-molecular-weight hemicellulose fractions. Plots of molecular weight vs root-mean-square radius obtained by SEC-MALLS analysis revealed that all the wood celluloses comprise dense conformations in 1% LiCl/DMI. In contrast, bacterial cellulose, which was used as a pure cellulose model, has a random coil conformation as a linear polymer. These results show that both softwood and hardwood HMW celluloses contain branched structures, which are probably present on crystalline cellulose microfibril surfaces. These results are consistent with those obtained by permethylation analysis of wood celluloses.  相似文献   

18.
H. Hanssum  H. Rüterjans 《Biopolymers》1980,19(9):1571-1585
13C spin-lattice relaxation times of poly(L -lysine) have been obtained at 67.9 MHz in aqueous solution and in a mixed solvent (40% methanol/60% water). A concomitant determination of the conformation by CD permits the correlation of conformation and rotational diffusion of the polymer. The dependence on pH of the spin-lattice relaxation times of the 13Cα and the side-chain carbon resonances reflects the diffusional motion in the random-coil conformation, in the helix–coil transition, and in the conformation of the α-helix. In the mixed solvent the reorientational correlation time of the Cα-Hα vector increases from τ = 0.37 nsec (random coil) to τ = 12.0 nsec (α-helix). In aqueous solution the correlation time of this vector increases from τ = 0.33 nsec (random coil) to τ ? 11 nsec. The reorientation rates of the side-chain methylene groups in the two solvents are markedly different. The reorientation of all methylene groups is reduced in the mixed solvent.  相似文献   

19.
The water-proton spin-lattice relaxation rate constant, 1/T(1), was measured as a function of magnetic field strength for several dilute protein solutions. By separating the intermolecular contributions from the intramolecular contributions to the water-proton spin-lattice relaxation, the number of water molecules that bind to the protein for a time long compared with the rotational correlation time may be measured. We find a good correlation between the number of long-lived water molecules and the predictions based on available free volume in the proteins studied. The rotational correlation times of these proteins are larger than predicted by the Stokes-Einstein-Debye (SED) model for a sphere reorienting in a viscous liquid. The discrepancy between experiment and theory is usually attributed to hydration effects increasing the effective radius of the particle. However, the average lifetime of water molecules at the protein interface is far too short to justify such a picture. We suggest that surface roughness may be responsible for the retardation of rotational mobility and find that the SED model provides a reasonable representation of experiment if the radius assumed for the reorienting particle is the arithmetic mean of the crystallographic packing radius and the radius deduced from the effective surface area of the protein.  相似文献   

20.
The heterogeneous hydrolytic degradation of cellulose after treatment with liquid ammonia has been studied. The level off degree of polymerisation (LODP) of liquid ammonia treated (LAT) linters is reached after 3 h when hydrolysed in hydrochloric acid (6.5 mol/l) at 60 °C. The hydrocelluloses were characterized as trimethylsilyl derivatives and as tricarbanilates. LODPs of non-activated celluloses were in the range from 55 to 77, while LAT celluloses had LODPs between 27 and 39. Trimethylsilyl derivatives and tricarbanilates gave almost identical elution curves in size exclusion chromatography indicating comparable hydrodynamic volumes. Glass transition temperatures of trimethylsilyl celluloses with DPs from 27 to 39 were found to be lower than those of the derivatives of the parent celluloses (Avicel, cotton linters) and showed a dependence on molar mass indicating that oligomeric celluloses are obtained by the method reported. Treatment of cellulose in aqueous ammonia was less efficient than liquid ammonia treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号