首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse adenovirus type 1 (MAV-1) targets endothelial and monocyte/macrophage cells throughout the mouse. Depending on the strain of mouse and dose or strain of virus, infected mice may survive, become persistently infected, or die. We surveyed inbred mouse strains and found that for the majority tested the 50% lethal doses (LD(50)s) were >10(4.4) PFU. However, SJL/J mice were highly susceptible to MAV-1, with a mean LD(50) of 10(-0.32) PFU. Infected C3H/HeJ (resistant) and SJL/J (susceptible) mice showed only modest differences in histopathology. Susceptible mice had significantly higher viral loads in the brain and spleen at 8 days postinfection than resistant mice. Infection of primary macrophages or mouse embryo fibroblasts from SJL/J and C3H/HeJ mice gave equivalent yields of virus, suggesting that a receptor difference between strains is not responsible for the susceptibility difference. When C3H/HeJ mice were subjected to sublethal doses of gamma irradiation, they became susceptible to MAV-1, with an LD(50) like that of SJL/J mice. Antiviral immunoglobulin G (IgG) levels were measured in susceptible and resistant mice infected by an early region 1A null mutant virus that is less virulent that wild-type virus. The antiviral IgG levels were high and similar in the two strains of mice. Taken together, these results suggest that immune response differences may in part account for differences in susceptibility to MAV-1 infection.  相似文献   

2.
A herpes simplex virus type 2 (HSV-2) UL24 beta-glucuronidase (UL24-betagluc) insertion mutant was derived from HSV-2 strain 186 via standard marker transfer techniques. Cell monolayers infected with UL24-betagluc yielded cytopathic effect with syncytium formation. UL24-betagluc replicated to wild-type viral titers in three different cell lines. UL24-betagluc was not virulent after intravaginal inoculation of BALB/c mice in that all inoculated animals survived doses up to 400 times the 50% lethal dose (LD50) of the parental virus. Furthermore, few UL24-betagluc-inoculated mice developed any vaginal lesions. Intravaginal inoculation of guinea pigs with UL24-betagluc at a dose equivalent to the LD50 of parental virus (approximately 5 x 10(3) PFU) was not lethal (10/10 animals survived). Although genital lesions developed in some UL24-betagluc-inoculated guinea pigs, both the overall number of lesions and the severity of disease were far less than that observed for animals infected with parental strain 186.  相似文献   

3.
Strains of Sindbis virus differ in their virulence for mice of different ages; this variation is related in large part to variations in the amino acid compositions of E1 and E2, the surface glycoproteins. The comparative pathogenesis of Sindbis virus strains which are virulent or avirulent for newborn mice has not been previously examined. We have studied the diseases caused by a virulent wild-type strain, AR339, and two less virulent laboratory strains, Toto1101 and HRSP (HR small plaque). After peripheral inoculation of 1,000 PFU, AR339 causes 100% mortality within 5 days (50% lethal dose [LD50] = 3 PFU) while Toto1101 causes 70% mortality (LD50 = 10(2.4) PFU) and HRSP causes 50 to 60% mortality (LD50 = 10(5.1) PFU) with most deaths occurring 7 to 11 days after infection. However, after intracerebral inoculation of 1,000 PFU, Toto1101 is virulent (100% mortality within 5 days; LD50 = 4 PFU) while HRSP is not (75% mortality; LD50 = 10(4.2) PFU). After intracerebral inoculation, all three strains initiate new virus formation within 4 h, but HRSP reaches a plateau of 10(6) PFU/g of brain while Toto1101 and AR339 replicate to a level of 10(8) to 10(9) PFU/g of brain within 24 h. Interferon induction parallels virus growth. Mice infected with HRSP develop persistent central nervous system infection (10(6) PFU/g of brain) until the initiation of a virus-specific immune response 7 to 8 days after infection when virus clearance begins. The distribution of virus in the brains of mice was similar, but the virus was more abundant in the case of AR339. HRSP continued to spread until day 9. Clearance from the brain was complete by day 17. We conclude that the decreased virulence of HRSP is due to an intrinsic decreased ability of this strain of Sindbis virus to grow in neural cells of the mouse. We also conclude that CD-1 mice do not respond to the antigens of Sindbis virus until approximately 1 week of age. This lack of response does not lead to tolerance and persistent infection but rather to late virus clearance whenever the immune response is initiated.  相似文献   

4.
ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.  相似文献   

5.
Exposure to the nerve agent soman, an irreversible cholinesterase (ChE) inhibitor, results in changes in blood-brain barrier permeability attributed to its seizure-induced activity. However, smaller BBB changes may be independent of convulsions. Such minor injury may escape detection. A nonneuroinvasive neurovirulent Sindbis virus strain (SVN) was used as a marker for BBB permeability. Peripheral inoculation of mice with 2 x 10(3) plaque forming units (PFU) caused up to 10(5) PFU/ml viremia after 24 hours with no signs of central nervous system (CNS) infection and with no virus detected in brain tissue. Intra-cerebral injection of as low as 1-5 PFU of the same virus caused CNS infection, exhibited 5-7 days later as hind limb paralysis and death. Soman (0.1-0.7 of the LD50) was administered at peak viremia (1 day following peripheral inoculation). Sublethal soman exposure at as low as 0.1 LD50 resulted in CNS infection 6-8 days following inoculation in 30-40% of the mice. High virus titer were recorded in brain tissue of sick mice while no virus was detected in healthy mice subjected to the same treatment. No changes in the level of viremia or changes in viral traits were observed in the infected mice. The reversible anticholinesterases physostigmine (0.2 mg/kg, s.c.) and pyridostigmine (0.4 mg/kg, i.m.) injected at a dose equal to 0.1 LD50, induced similar results. Thus, both central and peripheral anticholinesterases (anti-ChEs) induce changes in BBB permeability sufficient to allow, at least in some of the mice, the invasion of this otherwise noninvasive but highly neurovirulent virus. This BBB change is probably due to the presence of cholinesterases in the capillary wall. SVN brain invasion served here as a highly sensitive and reliable marker for BBB integrity.  相似文献   

6.
Virulence of La Crosse virus is under polygenic control.   总被引:6,自引:5,他引:1       下载免费PDF全文
To identify which RNA segments of the California serogroup bunyaviruses determine virulence, we prepared reassortant viruses by coinfecting BHK-21 cells with two wild-type parents, La Crosse/original and Tahyna/181-57 viruses, which differed about 30,000-fold in virulence. The progeny clones were screened by polyacrylamide gel electrophoresis to ascertain the phenotype of the M and S RNA segments, and RNA-RNA hybridization was used to determine the genotype of selected clones. Two or three clones of each of the six possible reassortant genotypes were characterized quantitatively for neuroinvasiveness by determining the PFU/50% lethal dose (LD50) ratio after subcutaneous injection into suckling mice. The reassortants fell into two groups. (i) Six of seven reassortants with a La Crosse M RNA segment were as virulent as the parent La Crosse virus (about 1 PFU/LD50); the one exception was strikingly different (about 1,000 PFU/LD50) and probably represents a spontaneous mutant. (ii) The seven reassortants with a Tahyna M RNA segment were about 10-fold more virulent than the parent Tahyna virus (median 1,600 PFU/LD50 for reassortants and 16,000 PFU/LD50 for Tahyna virus). A comparative pathogenesis study in suckling mice of one reassortant virus and the parent Tahyna virus confirmed the greater neuroinvasiveness of the reassortant virus. From these data it was concluded that the M RNA segment was the major determinant of virulence, but that the other two gene segments could modulate the virulence of a nonneuroinvasive California serogroup virus.  相似文献   

7.
Following peripheral inoculation of experimental animals, herpes simplex virus type 2 (HSV-2) strains are more virulent than HSV-1 strains, and clinical studies suggest that they possess enhanced virulence in humans. One dramatic type-specific difference in virulence is observed following inoculation of the chorioallantoic membrane (CAM) of the chicken embryo: HSV-2, but not HSV-1, makes large pocks on the CAM, invades the mesoderm, generalizes in the embryo, and kills the chicken. These properties have been believed to be specific for HSV-2, and their molecular basis is unknown. We now report that an HSV-1 strain, ANG, behaves even more efficiently than HSV-2. In addition, we have transferred restriction fragments of ANG DNA to another HSV-1 strain, 17 syn+, conferring the CAM virulence phenotype on the normally CAM-avirulent 17 syn+. Like ANG, these recombinant viruses are 10(6)-fold more virulent (PFU/50%) lethal dose [LD50] ratio, less than or equal to 10(2)) than the parental 17 syn+ strain (PFU/LD50 ratio, greater than or equal to 10(8)). A molecularly cloned library of ANG DNA was used to identify two distinct regions containing the virulence functions. Transfer of sequences contained in either cloned ANG EcoRI fragment A (0.49 to 0.64 map units) or F (0.32 to 0.42 map units) DNA to 17 syn+ confers CAM virulence, whereas other cloned regions of the ANG genome do not. Using cloned DNA, we derived and plaque purified several virulent recombinant viruses with inserts from either the ANG EcoRI fragment A (INV-I) or F (INV-II) areas. In each instance, the transfer of the cloned INV-I or INV-II sequences enhanced virulence for the chicken embryo 10(6)-fold (PFU/LD50 ratio, less than or equal to 10(2]. In addition, the transfer of the cloned ANG EcoRI-F INV-II sequences resulted in a 10(3)-fold enhancement of neuroinvasiveness and virulence for mice. Following footpad inoculation, these recombinants kill mice with a PFU/LD50 ratio of approximately 10(3) (similar to HSV-2 strains) compared with 10(6) for 17 syn+. Thus, we have identified, cloned, and transferred two DNA regions from HSV-1 ANG which contain virulence genes (INV-I and INV-II) important in mesodermal invasiveness on the CAM and, in the case of INV-II, neuroinvasiveness in the mouse. In each instance, the recombinant HSV-1 viruses have attained enhanced virulence beyond that described for HSV-1 strains and similar to that seen with HSV-2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

9.
The ability of muramyl dipeptide (MDP) and its structural analogs (des-MDP, abu-MDP, and des-abu-MDP) to influence mouse natural killer (NK) cells in two different strains of mice was examined. In CBA/J mice, administration of MDP by both intraperitoneal (ip) and intravenous (iv) routes enhanced splenic NK cell activity. Maximum augmentation of NK cell activity was observed 3 days after MDP treatment. NK cell activity was also stimulated upon in vitro culture of CBA/J mouse spleen cells with MDP. Only iv inoculation of MDP to C57BL/6 mice 7 days previously enhanced NK cell activity of spleen cells. Peritoneal NK cell activity was not affected in either strain of mice, regardless of the route of inoculation of MDP. Two structural analogs of MDP, abu-MDP and des-abu-MDP, enhanced peritoneal NK cell activity, whereas des-MDP had no effect when tested 3 days after ip treatment of CBA/J mice with these compounds. Peritoneal NK cell activity of C57BL/6 mice was not modulated by des-MDP, abu-MDP, or des-abu-MDP. A synergistic effect on peritoneal NK cell activity was observed in both CBA/J and C57BL/6 mice treated first with MDP and then with lipopolysaccharide (LPS) or Bacillus Calmette-Guerin (BCG).  相似文献   

10.
Mouse adenovirus type 1 (MAV-1) produces a lethal disease in newborn or suckling mice characterized by infectious virus and viral lesions in multiple organs. Previous reports of MAV-1 infection of adult mice generally described serologic evidence of infection without morbidity or mortality. However, our current results demonstrate that MAV-1 causes a fatal illness in adult C57BL/6(B6) mice (50% lethal dose, [LD50], 10(3.0) PFU) but not in adult BALB/c mice at all of the doses tested (LD50, > or = 10(5.0) PFU). Adult (BALB/c x B6)F1 mice were intermediately susceptible (LD50, 10(4.5) PFU). Clinically, the sensitive B6 mice showed symptoms of acute central nervous system (CNS) disease, including tremors, seizures, ataxia, and paralysis. Light microscopic examination of CNS tissue from the B6 animals revealed petechial hemorrhages, edema, neovascularization, and mild inflammation in the brain and spinal cord. Analysis by electron microscopy showed evidence of inflammation, such as activated microglia, as well as swollen astrocytic endfeet and perivascular lipid deposition indicative of blood-brain barrier dysfunction. Outside of the CNS, the only significant pathological findings were foci of cytolysis in the splenic white pulp. Assessment of viral replication from multiple tissues was performed by using RNase protection assays with an antisense MAV-1 early region 1a probe. The greatest amounts of viral mRNA in MAV-1-infected B6 animals were located in the brain and spinal cord. Less viral message was detected in the spleen, lungs, and heart. No viral mRNA was detected in BALB/c mouse tissue, with the exception of low levels in the heart. Viral titers of organ tissues were also determined and were concordant with RNase protection findings on the brain and spinal cord but failed to demonstrate significant infectious virus in additional organs. Our experiments demonstrate that MAV-1 has a striking tropism for the CNS that is strain dependent, and this provides an informative in vivo model for the study of adenoviral pathogenesis.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) mutants that are attenuated for neurovirulence are being used for the treatment of cancer. We have examined the safety of G207, a multimutated replication-competent HSV-1 vector, in mice. BALB/c mice inoculated intracerebrally or intracerebroventricularly with 10(7) PFU of G207 survived for over 20 weeks with no apparent symptoms of disease. In contrast, over 80% of animals inoculated intracerebrally with 1.5 x 10(3) PFU of HSV-1 wild-type strain KOS and 50% of animals inoculated intracerebroventricularly with 10(4) PFU of wild-type strain F died within 10 days. Similarly, after intrahepatic inoculation of G207 (3 x 10(7) PFU) all animals survived for over 10 weeks, whereas no animals survived for even 1 week after inoculation with 10(6) PFU of KOS. After intracerebroventricular inoculation, LacZ expression was initially observed in the cells lining the ventricles and subarachnoid space; expression decreased until almost absent within 5 days postinfection, with no apparent loss of ependymal cells. G207 DNA could be detected by PCR in the brains of mice 8 weeks after intracerebral inoculation; however, no infectious virus could be detected after 2 days. As a model for latent HSV in the brain, we used survivors of an intracerebral inoculation of HSV-1 KOS at the 50% lethal dose. Inoculation of a high dose of G207 at the same stereotactic coordinates did not result in reactivation of detectable infectious virus or symptoms of disease. We conclude that G207 is safe at or above doses that were efficacious in mouse tumor studies.  相似文献   

12.
13.
Lee M  Xiao J  Haghjoo E  Zhan X  Abenes G  Tuong T  Dunn W  Liu F 《Journal of virology》2000,74(23):11099-11107
A pool of murine cytomegalovirus (MCMV) mutants was generated by using a Tn3-based transposon mutagenesis procedure. One of the mutants, RvM37, which contained the transposon sequence at open reading frame M37, was characterized both in tissue culture and in immunocompetent BALB/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M37 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M37 region, the viral mutant was severely attenuated in growth in both BALB/c and SCID mice after intraperitoneal infection. Specifically, titers of the Smith strain and rescued virus in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice at 21 days postinfection were about 5 x 10(5), 2 x 10(5), 5 x 10(4), 5 x 10(3), and 1 x 10(4) PFU/ml of organ homogenate, respectively; in contrast, titers of RvM37 in these organs were less than 10(2) PFU/ml of organ homogenate. Moreover, the virulence of the mutant virus appeared to be significantly attenuated because none of the SCID mice infected with RvM37 had died by 120 days postinfection, while all animals infected with the wild-type and rescued viruses had died by 26 days postinfection. Our results suggest that M37 probably encodes a virulence factor and is required for MCMV virulence in SCID mice and for optimal viral growth in vivo.  相似文献   

14.
Research was undertaken to answer basic questions on susceptibility, clinical response and transmission of ectromelia virus in selected strains of inbred mice. C57BL/6J and AKR/J were found to be markedly more resistant to a virulent strain of ectromelia virus (isolated during the 1979-80 outbreak at the National Institutes of Health) than C57LJ, BALB/cByJ, DBA/2J, A.By/SNJ and C3H/HeJ when infected by footpad inoculation. In C57BL/6J and AKR/J the LD50 was about 7 logs higher than the ID50. With one exception, C57LJ, the LD50 and ID50 titers in the other strains were about equal. In C57LJ the LD50 titer was intermediate. Following intragastric inoculation, virus was isolated from feces of C57BL/6J mice for as long as 46 days and up to 29 days from BALB/cByJ mice. Transmission to cage mates from intragastrically infected C57BL/6J and BALB/cByJ occurred up to 36 and 30 days respectively after infection. Virus was isolated from the spleen in 2 of 5 BALB/cByJ mice and 1 of 7 C57BL/6J mice tested 95 days after gastric inoculation. Following footpad inoculation, BALB/cByJ mice consistently transmitted virus to cage mates before death at 10-12 days. C57BL/6J mice transmitted between days 8 and 17, but not beyond. Virus was maintained in C57BL/6J mice by exposure to infected cage mates for seven passages, which was the most attempted. Clinical signs in infected C57BL/6J mice were usually subtle or inapparent.  相似文献   

15.
A partially purified thymic factor, thymostimulin (TS), significantly increased the survival rate of adult, immune-intact mice infected with the neurotropic Mengo virus. TS treatment was begun after virus inoculation by daily i.p. injections. In untreated C57BL/6 mice, LD50 was reached with 1 X 10(4) PFU, but 10-fold more virus (i.e., 1 X 10(5) PFU) was needed to reach LD50 in TS-treated animals. TS effect on survival, though, could be observed with several virus doses (1 X 10(3) to 1 X 10(6) PFU) (p less than 0.001). A significant effect on survival was also observed with outbred ICR mice (p less than 0.005). Serum interferon (IFN) levels in the Mengo virus-infected mice were relatively low (average peak 300 U/ml), but were significantly increased (two- to ninefold) in the TS-treated mice. Peak serum levels were reached earlier in TS than in control animals (24 hr and 72 hr, respectively). Both acid-labile and acid-stable type I IFN production were augmented by TS in the Mengo virus-infected mice. Natural killer activity was also enhanced by TS, in particular on the second day after virus inoculation. In addition, MP-virus was used as a second, unrelated virus challenge. This virus caused a nonlethal infection, with relatively high levels of serum IFN (average peak 10,000 U/ml). TS increased IFN levels (two- to eight-fold) also in this challenge system. In conclusion, TS causes a nonspecific enhancement of endogenous production of IFN and has a significant effect on the survival of lethally infected mice. The data indicate a potential application of thymic factors for the treatment of viral infections.  相似文献   

16.
Two yellow fever virus (YFV)/dengue virus chimeras which encode the prM and E proteins of either dengue virus serotype 2 (dengue-2 virus) or dengue-4 virus within the genome of the YFV 17D strain (YF5.2iv infectious clone) were constructed and characterized for their properties in cell culture and as experimental vaccines in mice. The prM and E proteins appeared to be properly processed and glycosylated, and in plaque reduction neutralization tests and other assays of antigenic specificity, the E proteins exhibited profiles which resembled those of the homologous dengue virus serotypes. Both chimeric viruses replicated in cell lines of vertebrate and mosquito origin to levels comparable to those of homologous dengue viruses but less efficiently than the YF5.2iv parent. YFV/dengue-4 virus, but not YFV/dengue-2 virus, was neurovirulent for 3-week-old mice by intracerebral inoculation; however, both viruses were attenuated when administered by the intraperitoneal route in mice of that age. Single-dose inoculation of either chimeric virus at a dose of 10(5) PFU by the intraperitoneal route induced detectable levels of neutralizing antibodies against the homologous dengue virus strains. Mice which had been immunized in this manner were fully protected from challenge with homologous neurovirulent dengue viruses by intracerebral inoculation compared to unimmunized mice. Protection was associated with significant increases in geometric mean titers of neutralizing antibody compared to those for unimmunized mice. These data indicate that YFV/dengue virus chimeras elicit antibodies which represent protective memory responses in the mouse model of dengue encephalitis. The levels of neurovirulence and immunogenicity of the chimeric viruses in mice correlate with the degree of adaptation of the dengue virus strain to mice. This study supports ongoing investigations concerning the use of this technology for development of a live attenuated viral vaccine against dengue viruses.  相似文献   

17.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice provides a tractable small-animal model system for assessing the requirements for the establishment and maintenance of gammaherpesvirus latency within the lymphoid compartment. The M2 gene product of gammaHV68 is a latency-associated antigen with no discernible homology to any known proteins. Here we focus on the requirement for the M2 gene in splenic B-cell latency. Our analyses showed the following. (i) Low-dose (100 PFU) inoculation administered via the intranasal route resulted in a failure to establish splenic B-cell latency at day 16 postinfection. (ii) Increasing the inoculation dose to 4 x 10(5) PFU administered via the intranasal route partially restored the establishment of B-cell latency at day 16, but no virus reactivation was detected upon explant into tissue cultures. (iii) Although previous data failed to detect a phenotype of the M2 mutant upon high-dose intraperitoneal inoculation, decreasing the inoculation dose to 100 PFU administered intraperitoneally revealed a splenic B-cell latency phenotype at day 16 that was very similar to the phenotype observed upon high-dose intranasal inoculation. (iv) After low-dose intraperitoneal inoculation, fractionated B-cell populations showed that the M2 mutant virus was able to establish latency in surface immunoglobulin D-negative (sIgD(-)) B cells; by 6 months postinfection, equivalent frequencies of M2 mutant and marker rescue viral genome-positive sIgD(-) B cells were detected. (v) Like the marker rescue virus, the M2 mutant virus also established latency in splenic naive B cells upon low-dose intraperitoneal inoculation, but there was a significant lag in the decay of this latently infected reservoir compared to that seen with the marker rescue virus. (vi) After low-dose intranasal inoculation, by day 42 postinfection, latency was observed in the spleen, although at a frequency significantly lower than that in the marker rescue virus-infected mice; by 3 months postinfection, nearly equivalent levels of viral genome-positive cells were observed in the spleens of marker rescue virus- and M2 mutant virus-infected mice, and these cells were exclusively sIgD(-) B cells. Taken together, these data convincingly demonstrate a role for the M2 gene product in reactivation from splenic B cells and also suggest that disruption of the M2 gene leads to dose- and route-specific defects in the efficient establishment of splenic B-cell latency.  相似文献   

18.
A total of 115 clones of Aedes albopictus cells were examined for their response to infection with Semliki Forest virus. Virus yield and cytopathology showed a bimodal distribution. More than 68% of the clones gave low yields of virus (between 8 x 10(6) and 2 x 10(8) PFU/ml) with no discernable cytopathology, and 30% gave high yields of virus (between 1 x 10(9) and 8 x 10(9) PFU/ml) and showed moderate to severe cytopathology. To determine the level at which restriction in virus growth occurs in the low-virus-producing clones, we compared the nature and extent of several virus-directed events in selected low-virus-producing clones with the same events in high-virus-producing clones. Specifically, we compared virus-specified polypeptide synthesis, positive- and negative-strand RNA synthesis, adsorption, uncoating, and transfection with virion 42S RNA. These studies showed that whereas events before negative-strand RNA synthesis and all subsequent virus-specified events were markedly reduced in the low-virus-producing lines, compared with the high-virus-producing lines. Thus, the restriction in virus growth in the low-virus-producing lines occurs at the level of synthesis of negative-strand RNA. The consequence of this restriction in an early step in the virus multiplication cycle is discussed in terms of the survival of invertebrate cells after alphavirus infection.  相似文献   

19.
Up to 3 weeks of age, mice of the resistant A/J strain are fully susceptible to mouse hepatitis virus type 3 infection (MHV3). Immune deficiency, however, resulting from neonatal thymectomy or long term ALS administration led A/J animals to remain susceptible when tested at adult age. Whole spleen cells transferred from normal adult A/J donor mice protected suckling syngeneic recipients from i.p. infection with MHV3. Such a protective capacity of spleen cells was abolished after treatment with anti-theta serum and complement. Spleen cell separation by means of adherence to plastic also showed that neither the nonadherent nor the adherent populations injected separately were able to confer resistance to young mice challenged with the virus. Protection was not achieved with peritoneal cells originating from adult syngeneic animals. Transfer of resistance to MHV3 was obtained, however, when peritoneal cells were associated with adherent spleen cells. This study indicated that two types of mature cells, at least, were required for transferring MHV3 resistance into newborn mice of the A/J strain: T lymphocytes and an adherent spleen cell population.  相似文献   

20.
Rabies fixed virus (CVS) was passaged 10 times in mice by intramuscular (im) route followed by experimental inoculation of the titrated virus in 4 groups of mice with the dose of 0.1 ml of 1000 mouse (LD50 0.03 ml) using intracerebral (ic), intravenous (iv), intramuscular (im), intraocular (io), and intranasal (in) routes respectively. No marked variation in clinical signs due to variation of routes could be detected. Involvement of brain with io route could be detected even in preclinical stage. Although the virus could be detected in the postclinical stage in all the tissues under study (brain, skin, salivary gland and corneal impression), with io and ic routes spread of the virus was observed in comparatively higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号