首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attenuation of phrenic motor discharge by phrenic nerve afferents   总被引:4,自引:0,他引:4  
Short latency phrenic motor responses to phrenic nerve stimulation were studied in anesthetized, paralyzed cats. Electrical stimulation (0.2 ms, 0.01-10 mA, 2 Hz) of the right C5 phrenic rootlet during inspiration consistently elicited a transient reduction in the phrenic motor discharge. This attenuation occurred bilaterally with an onset latency of 8-12 ms and a duration of 8-30 ms. Section of the ipsilateral C4-C6 dorsal roots abolished the response to stimulation, thereby confirming the involvement of phrenic nerve afferent activity. Stimulation of the left C5 phrenic rootlet or the right thoracic phrenic nerve usually elicited similar inhibitory responses. The difference in onset latency of responses to cervical vs. thoracic phrenic nerve stimulation indicates activation of group III afferents with a peripheral conduction velocity of approximately 10 m/s. A much shorter latency response (5 ms) was evoked ipsilaterally by thoracic phrenic nerve stimulation. Section of either the C5 or C6 dorsal root altered the ipsilateral response so that it resembled the longer latency contralateral response. The low-stimulus threshold and short latency for the ipsilateral response to thoracic phrenic nerve stimulation suggest that it involves larger diameter fibers. Decerebration, decerebellation, and transection of the dorsal columns at C2 do not abolish the inhibitory phrenic-to-phrenic reflex.  相似文献   

2.
The diagastric nerve reflex response to stimulation of the upper lip was studied in urethan-anesthetized rabbits paralysed with pancuronium bromide. Rhythmic bursts of masticatory activity were evoked in the nerve by repetitive electrical stimulation of the motor cortex. The amplitude and latency of the reflex responses during fictive mastication were compared with preceding control values. When stimuli close to threshold were given, the largest and earliest responses occurred during the digastric burst. When intense stimuli were employed, the largest responses were out of phase with the burst, although the latency was still shortest when the motoneurons were rhythmically active. Since the pattern is essentially the same as that seen during normal mastication, we conclude that the cyclical modulation of reflex amplitude and latency is not the result of sensory feedback generated by the movements themselves but is instead governed by the central motor program.  相似文献   

3.
The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ~50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (~5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.  相似文献   

4.
Wang GM  Song G  Zhang H 《生理学报》2005,57(4):511-516
本文旨在研究电刺激家兔迷走神经诱导的黑-伯(Hering-Breuer,HB)反射中的学习和记忆现象。选择性电刺激家兔迷走神经中枢端(频率10~100Hz,强度20~60μA,波宽0.3ms,持续60s),观察对膈神经放电的影响。以不同频率电刺激家兔迷走神经可模拟HB反射的两种成分,即类似肺容积增大所致抑制吸气的肺扩张反射和类似肺容积缩小所致加强吸气的肺萎陷反射。(1)长时高频(≥40Hz,60s)电刺激迷走神经可模拟呼吸频率减慢,呼气时程延长的肺扩张反射。随着刺激时间的延长,膈神经放电抑制的程度逐渐衰减,表现为呼吸频率的减慢(主要由呼气时程延长所致)在刺激过程中逐渐减弱或消失,显示为适应性或“习惯化”的现象;刺激结束时呼吸运动呈现反跳性增强,表现为一过性的呼气时程缩短,呼吸频率加快,然后才逐渐恢复正常。长时低频(〈40Hz,60s)电刺激迷走神经可模拟呼吸频率加快、呼气时程缩短的肺萎陷反射。随着刺激时间的延长,膈神经放电增强的程度逐渐衰减,同样表现出“习惯化”现象;刺激结束后,膈神经放电不是突然降低,而是继续衰减,表现为呼气时程逐渐延长,呼吸频率逐渐减慢,直至恢复到前对照水平,表现了刺激后的短时增强效应。(2)HB反射的适应性或“习惯化”程度反向依赖于刺激强度和刺激频率,表现为随着刺激强度和频率的增加,膈神经放电越远离正常基线水平,即爿惯化程度减弱。结果表明,家兔HB反射具有“习惯化”这一非联合型学习现象,反映与其有关的呼吸神经元网络具有突触功能的可翅性,呼吸的中枢调控反射具有一定的适应性。  相似文献   

5.
Electrical stimulation (50-150 microA, 0.5-ms duration, 3-300 Hz) was performed within three different regions (lateral, ventrolateral, and ventral) of the C2-C3 spinal cord of decerebrate, vagotomized, paralyzed, and artificially ventilated cats. Spinal cord stimulation sites were located by inserting monopolar or bipolar stimulating electrodes either at the dorsolateral sulcus or at least 1 mm medial or lateral to the sulcus. With stimulation at each site, alterations in respiratory rhythm, orthodromic phrenic nerve responses, and antidromic activation of medullary respiratory-modulated neurons were examined. Phrenic nerve responses to cervical spinal cord stimulation consisted of an early excitation (2-4 ms) and/or a late excitation (4-8 ms). Stimulation of the lateral region evoked the greatest amplitude early response and stimulation of the ventrolateral region produced the greatest late excitation. All three stimulus sites elicited antidromic activation of some respiratory-modulated neurons in the dorsal (DRG) and ventral respiratory groups (VRG). The lateral region was the least effective resetting site, and it had the highest incidence of antidromic activation of both DRG and VRG neurons. The ventrolateral region of the cervical spinal cord was the most effective resetting site, but it had the lowest incidence of antidromic activation of DRG respiratory-modulated neurons. In addition, resetting responses were observed with spinal cord stimulation at similar sites in the thoracic and lumbar spinal cord regions thought to be devoid of inspiratory bulbospinal axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

7.
The superior and inferior colliculi are believed to generate immediate and highly coordinated defensive behavioral responses to threatening visual and auditory stimuli. Activation of neurons in the superior and inferior colliculi have been shown to evoke increases in cardiovascular and respiratory activity, which may be components of more generalized stereotyped behavioral responses. In this study, we examined the possibility that there are "command neurons" within the colliculi that can simultaneously drive sympathetic and respiratory outputs. In anesthetized rats, microinjections of bicuculline (a GABA(A) receptor antagonist) into sites within a circumscribed region in the deep layers of the superior colliculus and in the central and external nuclei of the inferior colliculus evoked a response characterized by intense and highly synchronized bursts of renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA). Each burst of RSNA had a duration of ~300-400 ms and occurred slightly later (peak to peak latency of 41 ± 8 ms) than the corresponding burst of PNA. The bursts of RSNA and PNA were also accompanied by transient increases in arterial pressure and, in most cases, heart rate. Synchronized bursts of RSNA and PNA were also evoked after neuromuscular blockade, artificial ventilation, and vagotomy and so were not dependent on afferent feedback from the lungs. We propose that the synchronized sympathetic-respiratory responses are driven by a common population of neurons, which may normally be activated by an acute threatening stimulus.  相似文献   

8.
1. Using indo-1 as a calcium fluorescent probe, we have observed the following in striatal astrocytes in primary culture. 2. The stimulation of alpha-adrenoceptors induces a rapid rise in cytosolic calcium resulting from an internal calcium mobilization followed by an external calcium influx (4-min duration). 3. The stimulation of beta 1-adrenoceptors evokes only a slight internal calcium mobilization (90-sec duration). 4. The simultaneous stimulation of beta 1- and alpha 1-adrenoceptors induces a more prolonged calcium influx (10 min). The latter phenomenon could explain the calcium-dependent synergistic effects of alpha 1 and beta stimulation on cAMP production already described in the brain.  相似文献   

9.
This study was undertaken to assess the effects of exogenous alpha-agonists on the effector response to transmural nerve stimulation in canine saphenous vein rings. The response to a fixed train (5 s duration) of transmural nerve stimulation (8 Hz, 0.3 ms, 9 V) applied every 5 min was determined in the control state and in the presence of subthreshold (for contraction) concentrations of noradrenaline, adrenaline, clonidine, and methoxamine. The maximum potentiations achieved by the three drugs were 246.2 +/- 36.9, 220.5 +/- 38.8, 384.3 +/- 78.7, and 353.3 +/- 68.0%, respectively. The potentiation observed was significantly inhibited by indomethacin (10(-6) mol/L) and propranolol (5 X 10(-6) mol/L). Both indomethacin and propranolol potentiated the response to transmural nerve stimulation. The potentiation of the responses to transmural nerve stimulation by alpha-agonists suggests that, presynaptic alpha 2-inhibition by circulating catecholamines is likely to be of limited biological significance in modulating the effector responses in the canine saphenous vein.  相似文献   

10.
Neuromuscular transmission was studied in diaphragms from rats of three ages, 4-7 days old, 11-12 days old, and adults with the use of an in vitro phrenic nerve-hemidiaphragm preparation. Each hemidiaphragm was stimulated via either muscle or nerve with 1-s stimulus trains at frequencies from 10 to 100 Hz. The patterns of force development obtained in response to the two routes of stimulation were compared for each group. Diaphragms from adults developed maximum force in response to stimulation of approximately 40 Hz with no significant decrease in force at higher frequencies. Within each stimulus train, once peak force was achieved, it was maintained for the remainder of the stimulus and responses to nerve and muscle stimulation were almost identical. In contrast, diaphragms from 4- to 7-day-old rats developed maximum force at approximately 20 Hz; stimulation at greater than or equal to 60 Hz induced significantly less peak force. This decrease in peak force at higher frequencies was significantly larger for nerve than for muscle stimulation. In addition, during each nerve stimulus train diaphragms from 4- to 7-day-old rats were unable to maintain peak force, which decreased at frequencies greater than 20 Hz. The decrease in force reached approximately 50% of peak at stimulation frequencies greater than or equal to 60 Hz. Diaphragms from 11- to 12-day-old rats showed intermediate responses. Based on the responses to phrenic nerve stimulation, we conclude that the neonatal rat diaphragm shows marked neuromuscular transmission failure that is not seen in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Recordings made from decerebrated, paralyzed eels (Anguilla anguilla) producing rhythmical spinal motoneuronal activity showed that around 65% of identified reticulospinal units, belonging to the inferior reticular division, discharged rhythmically. The reticulospinal bursts, lasting from 300 up to 3000 ms, were in time with spinal motoneuronal bursting activity. In different fish the modal cycle period varied between 2 to 4 s and burst duration and firing frequency of each neuron showed large changes from cycle to cycle. Burst responses similar in form to those occurring spontaneously were evoked from reticular neurons when the ophthalmic nerve was stimulated regularly (intervals of 1 to 10 s) but the cycle period, firing frequency and burst duration were now more predictable. For stimulation intervals between 2 and 5 s, each ophthalmic nerve stimulus was normally followed by a burst from the reticulospinal neuron. The cycle period of the reticular rhythm then became equal to the interstimulus interval and the reticulospinal unit was entrained by the stimulus. Beyond this range of interstimulus intervals, complete entrainment was lost. We suggest that regular sensory input provides a powerful stabilising influence to rhythmically active motor systems in the brainstem and spinal cord.  相似文献   

12.
Chronic exposure to hypoxia results in a time-dependent increase in ventilation called ventilatory acclimatization to hypoxia. Increased O(2) sensitivity of arterial chemoreceptors contributes to ventilatory acclimatization to hypoxia, but other mechanisms have also been hypothesized. We designed this experiment to determine whether central nervous system processing of peripheral chemoreceptor input is affected by chronic hypoxic exposure. The carotid sinus nerve was stimulated supramaximally at different frequencies (0.5-20 Hz, 0.2-ms duration) during recording of phrenic nerve activity in two groups of anesthetized, ventilated, vagotomized rats. In the chronically hypoxic group (7 days at 80 Torr inspired PO(2)), phrenic burst frequency (f(R), bursts/min) was significantly higher than in the normoxic control group with carotid sinus nerve stimulation frequencies >5 Hz. In the chronically hypoxic group, peak amplitude of integrated phrenic nerve activity ( integral Phr, percent baseline) or change in integral Phr was significantly greater at stimulation frequencies between 5 and 17 Hz, and minute phrenic activity ( integral Phr x f(R)) was significantly greater at stimulation frequencies >5 Hz. These experiments show that chronic hypoxia facilitates the translation of arterial chemoreceptor afferent input to ventilatory efferent output through a mechanism in the central nervous system.  相似文献   

13.
蟾蜍脊神经节神经元对外周重复刺激的反应   总被引:6,自引:0,他引:6  
吕国蔚  市翠英 《生理学报》1991,43(3):220-226
本工作用细胞内记录技术,研究并分析了蟾蜍离体脊神经节神经元对重复刺激其外周突(坐骨神经)的反应。所记录的66个神经元的传导速度,刺激阈值和静息膜电位分別为5.3—20.0m/s,0.02—0.10mA 和-50—-80mV。随着重复刺激频率的增加,脊神经节神经元的细胞内动作电位进行性地出现潜伏期动摇或延迟、振幅降低、后超极化减弱和时程延长。与此同时,锋电位分解成 S、NM 和 M 三种亚波成分,并进而出现脱失。S、NM 和 M 成分对刺激频率的跟随能力为 S相似文献   

14.
The distal colon of the guinea-pig is relaxed by noradrenaline, by isoprenaline and by the stimulation of fibres running with the colonic nerves or intramurally. The relaxations in response to stimulation of the colonic nerves have a guanethidine-sensitive (adrenergic) and a guanethidine-insensitive (non-adrenergic) component. Cocaine causes a three-fold sensitization of the muscle to noradrenaline but no sensitization to isoprenaline. Cocaine increases the duration, but does not affect the amplitude, of the relaxation observed when adrenergic nerves are stimulated, and affects neither duration nor amplitude of the non-adrenergic response. The adrenergic nerve terminals lie in Auerbach's plexus, not in the longitudinal muscle. It is concluded that the sensitization to noradrenaline and the increases in durations of responses to adrenergic nerve stimulation are due to inhibition of catecholamine uptake into adrenergic nerves by cocaine. It appears that, even where the neuromuscular separation is large as it is in the colon, the concentration of exogenous noradrenaline at the receptors can be decreased by neuronal uptake, and the uptake mechanism can modify responses to nerve stimulation in vitro.  相似文献   

15.
This study investigated the efficacy of magnetic stimulation on the reflex cardiovascular responses induced by gastric distension in anesthetized rats and compared these responses to those influenced by electroacupuncture (EA). Unilateral magnetic stimulation (30% intensity, 2 Hz) at the Jianshi-Neiguan acupoints (pericardial meridian, P 5-6) overlying the median nerve on the forelimb for 24 min significantly decreased the reflex pressor response by 32%. This effect was noticeable by 20 min of magnetic stimulation and continued for 24 min. Median nerve denervation abolished the inhibitory effect of magnetic stimulation, indicating the importance of somatic afferent input. Unilateral EA (0.3-0.5 mA, 2 Hz) at P 5-6 using similar durations of stimulation similarly inhibited the response (35%). The inhibitory effects of EA occurred earlier and were marginally longer (20 min) than magnetic stimulation. Magnetic stimulation at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37-39) overlying the superficial peroneal nerve on the hindlimb did not attenuate the reflex. Intravenous naloxone immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex, suggesting involvement of the opioid system. Also, intrathecal injection of delta- and kappa-opioid receptors antagonists, ICI174,864 (n=7) and nor-binaltorphimine (n=6) immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex. In contrast, the mu-opioid antagonist CTOP (n=7) failed to alter the cardiovascular reflex. The endogenous neurotransmitters for delta- and kappa-opioid receptors, enkephalins and dynorphin but not beta-endorphin, therefore appear to play significant roles in the spinal cord in mediating magnetic stimulation-induced modulation of cardiovascular reflex responses.  相似文献   

16.
Reduction in concentration of prostaglandins in plasma by administration of sodium meclofenamate to pregnant sheep failed to alter the frequency or duration of electromyographic activity bursts or the response to oxytocin of myometrial tissue transplanted to the omentum. However, a significant (P < 0.05) delay (8.6 +/- 3.8 versus 1.3 +/- 0.3 min) in the myometrial response to oxytocin was observed when the hormone was administered 1 min after a spontaneous burst of electromyographic activity compared with 15 min after a burst, indicating a period of refractoriness. Similarly, the myometrial threshold for electrical stimulation was higher at 10-25% of the interval between contractions than close to the expected time of the next contraction. Stimulation of the myometrium at intervals of 30 s revealed a cycling of the electrical stimulation threshold: significantly higher voltages were required to elicit responses between spontaneous bursts of electromyographic activity (18.0 +/- 2.2 V) than during bursts (11.3 +/- 1.6 V). In contrast, there was no voltage differential in animals close to labour (< 24 h). These data provide no evidence to support a role for prostaglandins in the generation of contractions during pregnancy, but suggest that periodicity of contractions is associated with inherent changes in myometrial responsiveness to stimulation, which could occur as a result of a cycling of the resting membrane potential.  相似文献   

17.
Using microinjection techniques, we have explored the isolated, complete midline sectioned brainstem of the frog (Rana catesbeiana) to identify regions that influence the endogenous respiratory-related motor activity. Ten-nanoliter injections of lidocaine (1%), GABA (100 mM) and glutamate (10 and 100 mM) into discrete regions of the rostral and the caudal brainstem produced different effects on the phasic neural discharge. In the rostral site lidocaine, GABA and glutamate injections altered neural burst frequency with little or no effect on burst amplitude. In the caudal site, responses to lidocaine and GABA injections consisted primarily of decreases in neural burst amplitude, often, but not always associated with minor decreases in burst frequency. In this same region, the response to glutamate was characterized by a temporary interruption of the rhythmic neural burst activity. The largest responses to substance injection in both regions were obtained at sites ranging between 200 and 500 m from the ventral surface, in the ventral medullary reticular formation. The results reveal the existence of two areas in the frog brainstem that influence respiratory motor output, one related to the respiratory burst frequency and the other related to the amplitude of the motor output.Abbreviations V trigeminal nerve - VI abducens nerve - VII facial nerve - VIII auditory nerve - X vagal nerve - H hypoglossal nerve - VRG ventral respiratory group - NTS nucleus of the solitary tract  相似文献   

18.
This study aimed to test whether nerve-evoked and adenosine-induced synaptic depression are due to reduction in Ca2+ entry in nerve terminals of the frog neuromuscular junction. Nerve terminals were loaded with the fluorescent Ca2+ indicator fluo 3 (fluo 3-AM) or loaded with dextran-coupled Ca2+ green-1 transported from the cut end of the nerve. Adenosine (10-50 microM) did not change the resting level of Ca2+ in the presynaptic terminal, whereas it induced large Ca2+ responses in perisynaptic Schwann cells, indicating that adenosine was active and might have induced changes in the level of Ca2+ in the nerve terminal. Ca2+ responses in nerve terminals could be induced by nerve stimulation (0.5 or 100 Hz for 100 ms) over several hours. In the presence of adenosine (10 microM), the size and duration of the nerve-evoked Ca2+ responses were unchanged. When extracellular Ca2+ concentration was lowered to produce the same reduction in transmitter release as the application of adenosine, Ca2+ responses induced by nerve stimulations were reduced by 40%. This indicates that changes in Ca2+ responsible for the decrease in release should have been detected if the mechanism of adenosine depression involved partial block of Ca2+ influx. Ca2+ responses evoked by prolonged high frequency trains of stimuli (50 Hz for 10 or 30 s), which caused profound depression of transmitter release, were sustained during the whole duration of the stimulation, and adenosine had no effect on these responses. These data indicate that neither adenosine induced synaptic depression nor stimulation-induced synaptic depression are caused by reductions in Ca2+ entry into the presynaptic terminal in the frog neuromuscular junction.  相似文献   

19.
盆神经和阴部神经传入在大鼠腰骶髓的相互作用   总被引:8,自引:0,他引:8  
Wang RP  Li QJ  Lu GW 《生理学报》2000,52(2):115-118
应用条件-检验刺激技术观察时间依赖性抑制现象是研究传入信息相互作用的方式之一。用1.5-3倍阈刺激强度的电脉冲交替刺激麻醉、麻痹的盆神经(Pe)和阴部神经(Pu),以玻璃微电极在L6-S1节段脊髓背角会聚神经元上记录细胞外放电。条件输入可对深层(>300μm)单位的检验反应产生时间依赖性抑制效应,产生抑制的刺激间期为1-360ms,Pe为条件刺激时较长。浅层细胞(<300μm)发生抑制的间期为1-  相似文献   

20.
Using decerebrate frogs (Rana catesbeiana), we investigated the role of vagal and laryngeal sensory feedback in controlling motor activation of the larynx. Vagal and laryngeal nerve afferents were activated by electrical stimulation of the intact vagal and laryngeal nerves. Pulmonary afferents were activated by lung inflation. Reflex responses were recorded by measuring efferent activity in the laryngeal branch of the vagus (Xℓ) and changes in glottal aperture. Two glottic closure reflexes were identified, one evoked by lung inflation or electrical stimulation of the main branch of the vagus (Xm), and the other by electrical stimulation of Xℓ. Lung inflation evoked a decrementing burst of Xℓ efferent activity and electrical stimulation of Xm resulted in a brief burst of Xℓ action potentials. Electrical stimulation of Xℓ evoked a triphasic mechanical response, an abrupt glottal constriction followed by glottal dilatation followed by a long-lasting glottal constriction. The first phase was inferred to be a direct (nonreflex) response to the stimulus, whereas the second and third represent reflex responses to the activation of laryngeal afferents. Intracellular recordings of membrane potential of vagal motoneurons of lung and nonlung types revealed EPSPs in both types of neurons evoked by stimulation of Xm or Xℓ, indicating activation of glottal dilator and constrictor motoneurons. In summary, we have identified two novel reflexes producing glottic closure, one stimulated by activation of pulmonary receptors and the other by laryngeal receptors. The former may be part of an inspiratory terminating reflex and the latter may represent an airway protective reflex. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 213–222, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号