首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We employed the comet assay (single cell gel electrophoresis) to evaluate induced DNA damage in nuclei isolated from tobacco leaves (Nicotiana tabacum var. xanthi) inoculated with Potato virus X (PVX). The highest DNA damage, expressed by the tail moment value, was observed in the inoculated leaves and decreased in the 1st to 4th systemic leaves. DNA damage increased with the time after the inoculation (from day 3 to day 21) and was higher in nuclei isolated from a part of the leaf at the petiole compared to nuclei isolated from the leaf tip. A Pearson moment correlation (r = 0.94) between the induced DNA damage and the PVX titres expressed by ELISA absorbance values was observed. The PVX infection did not induce a significant increase in the rate of somatic mutations evaluated by appearance of dark green, yellow, and double green/yellow sectors on the heterozygous pale green leaves of N. tabacum var. xanthi.  相似文献   

2.
The level of hydrogen peroxide (H(2)O(2))-induced genomic DNA damage measured by the Comet assay in tobacco suspension cells (TX1) increased as a function of the age of the culture. After treatment of TX1 cells with 15 mM H(2)O(2), the average (+/-S.E.) median tail moment value was only 4.85+/-1.00 microm in nuclei isolated from 2-day-old cells compared to 72.33+/-1.40 microm in nuclei isolated from 12-day-old cells. By contrast, nuclei first isolated from 2 and 12-day-old cells and then treated with H(2)O(2), expressed the same level of DNA damage. The activity of catalases was markedly higher in 2-day-old TX1 cells compared to 12-day-old cells. The results indicate that the reaction of the H(2)O(2) with nuclear DNA is modified by the presence of the plant cell wall, and enzymes and macromolecules present in the cytosol, and is not connected with changes in the nuclear DNA sensitivity during cell suspension growth.  相似文献   

3.
For most crops growing in polluted areas or treated with agricultural chemicals, no genotoxicity assays are available. We have studied the possibility of using the alkaline protocol of the plant-based molecular assay — the Single Cell Gel Electrophoresis (SCGE) assay (also called Comet assay) as a method for detecting induced DNA damage in 8 agronomic important plants (ordered according to the diameter of the nuclei): sugar beet, alfalfa, tobacco, lentil, maize, potato, hard wheat, and bread wheat. The monofunctional alkylating agent ethyl methanesulphonate (EMS) was applied as a model genotoxic agent on young excised leaves of the tested crops for 18 h at 26 °C in the dark. With increasing concentrations of 2 to 10 mM EMS, the DNA damage, expressed by the averaged median tail moment values, significantly increased in nuclei of all crops studied. No correlation between the diameter of nuclei and sensitivity to EMS treatment was observed. The data obtained demonstrate the feasibility of using the Comet assay for detecting induced DNA damage in crops. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The single-cell gel electrophoresis (Comet) assay has been widely used to measure DNA damage in human sperm in a variety of physiological and pathological conditions. We investigated the effects of in vivo radiation, a known genotoxin, on spermatogenic cells of the mouse testis and examined sperm collected from the vas deferens using the neutral Comet assay. Irradiation of differentiating spermatogonia with 0.25-4 Gy X-rays produced a dose-related increase in DNA damage in sperm collected 45 days later. Increases were found when measuring Comet tail length and percentage of tail DNA, but the greatest changes were in tail moment (a product of tail length and tail DNA). Spermatids, spermatocytes, differentiating spermatogonia, and stem cell spermatogonia were also irradiated in vivo with 4 Gy X-rays. DNA damage was indirectly deduced to occur at all stages. The maximum increase was seen in differentiating spermatogonia. DNA damaged cells were, surprisingly, still detected 120 days after stem cell spermatogonia had been irradiated. The distribution of DNA damage among individual sperm cells after irradiation was heterogeneous. This was seen most clearly when changes in the Comet tail length were measured when there were discrete undamaged and damaged populations. After increasing doses of irradiation, an increasing proportion of cells were found in the damaged population. Because a proportion of undamaged sperm cells remains after all but the highest dose, the possibility of normal fertility remains. However, fertilization with a spermatozoa carrying high amounts of DNA damage could lead to effects as diverse as embryonic death and cancer susceptibility in the offspring.  相似文献   

5.
Gichner T 《Mutation research》2003,538(1-2):171-179
The purpose of this study was to determine if mutagen-induced DNA damage is correlated with the frequency of induced recombination events. The alkylating agents ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU), and the plant growth regulator and herbicide maleic hydrazide (MH) were compared in tobacco seedlings for their ability to induce DNA damage measured by the Comet assay, and recombination activity measured by the GUS gene reactivation assay, and by the somatic twin sectors assay. While EMS and ENU induced a dose-dependent increase in DNA damage in leaf nuclei, MH had no significant effect. By contrast, MH induced a 6-fold higher frequency of homologous recombination as expressed by the GUS assay and a 2.8-fold higher frequency of somatic twin sectors than after EMS treatments.  相似文献   

6.
Heterozygous tobacco (Nicotiana tabacum var. xanthi) plants were cultivated in soil from a dump site highly polluted with polychlorinated biphenyls (PCBs) at Lhenice in South Bohemia, Czech Republic. The total amount of PCBs in the polluted soil, measured by gas chromatography varied from 165 to 265mgkg(-1) of soil. In tobacco plants cultivated for 8 weeks in the polluted soil the amount of PCB in the leaves varied from 11 to 28 and in the roots from 104 to 308mgkg(-1) dry mass. The average leaf area of tobacco plants growing in the PCB-polluted soil was significantly reduced and the DNA damage in leaf nuclei, measured by the comet assay, was slightly but significantly increased compared with controls. The tobacco plants with increased DNA damage showed reduced growth and had distorted leaves. No increase in the frequency of somatic mutations was detected in tobacco plants growing in the PCB-polluted soil.  相似文献   

7.
Of the three isomers of the aromatic amine phenylenediamine (PDA), only o-PDA, but not m- and p-PDA, induced DNA damage (as measured by the Comet assay), and somatic mutations in the leaves of the chlorophyll-deficient tester strain Nicotiana tabacum var. xanthi. With increasing light intensity (0, 30, 80 or 140 micromol m(-2)s(-1) photosynthetic photon fluence rate) during a 72h mutagenic treatment of tobacco seedlings, o-PDA-induced DNA damage and the yield of somatic mutations were significantly increased. The peroxidase inhibitor diethyldithiocarbamate (DEDTC) repressed o-PDA-induced DNA damage. The effect of light is caused by the light-dependent increase of peroxidase activity and the accumulation of hydrogen peroxide, which participate in the metabolic activation of the promutagen o-PDA to mutagenic product(s). In contrast, DNA damage induced by the direct-acting alkylating mutagen ethyl methanesulphonate was the same whether treatment was in the light or in the dark, and was not repressed by the peroxidase inhibitor DEDTC.  相似文献   

8.
DNA damage was induced by either 2 mM ethylmethanesulfonate or 1 Gy of gamma-irradiation in Allium cepa L. root meristems. The percentage of DNA that migrated towards the anode during microelectrophoresis after alkali denaturation (pH approximately 13.5) of the isolated nuclei (comet assay) reflects the amount of single strand breaks present in them. There was some DNA migration (12.8+/-2.4%) in untreated roots. This percentage doubled at the end of 1.5 h treatment with the mono-functional alkylating agent 2 mM ethylmethanesulfonate, and trebled after a single exposure to 1 Gy of gamma-rays. A proportion of the DNA migration caused by these two treatments was reversed (repaired) by a 2 h long period of in vivo recovery. However, when 5 mM caffeine was applied after removal of the alkylating agent, the amount of DNA migrating to the comet tail over the same 2 h period was almost double that at the onset of recovery. In both control and irradiated nuclei, caffeine also increased the initial level of DNA migration in the comet assay, but to a lesser extent. These results indicate that caffeine increases the DNA damage that accumulates during the processing of alkylated bases and, to a lesser extent, of the DNA bases damaged by gamma-irradiation. Thus, the potentiation effect of caffeine on induced chromosomal damage may not just be due to caffeine-induced cancellation of the G2 checkpoint, but also to a direct effect this methylxantine has on the processing of DNA damage.  相似文献   

9.
The in vivo and in vitro effects of UV-C (254 nm) exposure (0.039 watt . m(-2) . s for 2 h) of currant tomato (Lycopersicon pimpinellifolium), indigenous to Peru and Ecuador, were assayed. H(2)O(2) deposits, dead cells and DNA damage were localized, 12/24 h after irradiation, mainly in periveinal parenchyma of the 1st and 2nd order veins of the leaves, and before the appearance of visible symptoms, which occurred 48 h after irradiation. Cell death index was of 43.5 +/- 12% in exposed leaf tissues, 24 h after treatment. In currant tomato protoplasts, the percentage of viable cells dropped 1 h after UV-C irradiation from 97.42 +/- 2.1% to 43.38 +/- 4.2%. Afterwards, the protoplast viability progressively decreased to 40.16 +/- 7.25% at 2 h, to 38.31 +/- 6.9% at 4 h, and to 36.46 +/- 1.84% at 6 h after the exposure. The genotoxic impact of UV-C radiation on protoplasts was assessed with single cell gel electrophoresis (SCGE, or comet assay). UV-C treatment greatly enhanced DNA migration, with 75.37 +/- 3.7% of DNA in the tail versus 7.88 +/- 5.5% in the case of untreated nuclei. Oxidative stress by H(2)O(2) used as a positive control, induced a similar damage on non-irradiated protoplasts, with 71.59 +/- 5.5% of DNA in the tail, whereas oxidative stress imposed on UV-C irradiated protoplasts slightly increased the DNA damage (85.13 +/- 4.1%). According to these results, SCGE of protoplasts could be an alternative to nuclei extraction directly from leaf tissues.  相似文献   

10.
To investigate whether DNA damage arising in spermatogenic germ cells can be detected in resultant sperm, we have irradiated murine testis and collected spermatozoa from the vas deferens 45 days later. These cells were derived from spermatogonia present at the time of irradiation. Two forms of irradiation were used, external X-rays (4Gy) and internal auger electrons from contamination of the male mouse with the isotope Indium-114m (1.85MBq), which was localised in the testis. Both forms of irradiation produced a profound fall in vas deferens sperm count and testis weight, Indium-114m being more effective. Using the neutral Comet assay for double strand break detection, significant increases in sperm comet tail length and moment were observed. The levels of damage were similar for both treatments. Care had to be taken during the assay to distinguish between sperm and somatic cells as the proportion of the latter increased after irradiation. We conclude that the comet assay can detect DNA damage in spermatozoa after the in vivo exposure of male germ cells to a known testicular genotoxic agent. The assay may be useful for the assessment of sperm DNA damage (double stranded) associated with male infertility and post-fertilization developmental abnormalities in the offspring.  相似文献   

11.
以烟草原生质体为材料,采用彗星电泳检测用0.5W·m^-2紫外线以不同时间(0、5、10、30、60和120s)诱导的烟草原生质体中DNA的损伤。结果表明,在0~10s的时间内代表DNA损伤程度的尾矩、Olive尾矩等参数与紫外线照射时间具有良好的时间依赖关系。本文建立的烟草原生质体体系采用彗星电泳技术,可以快速而灵敏地检测紫外线对植物细胞的损伤程度。  相似文献   

12.
Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants   总被引:1,自引:0,他引:1  
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 microM to 200 microM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 microM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

13.
Gichner T 《Mutation research》2003,535(2):187-193
We have measured the level of DNA damage induced by treating roots (cellular Comet assay) and isolated root nuclei (acellular Comet assay) of catalase-deficient (CAT1AS) and wild-type (SR1) tobacco with the promutagen o-phenylenediamine (o-PDA) and the direct acting genotoxic agents hydrogen peroxide and ethyl methanesulphonate (EMS). The roots of CAT1AS have about 60% less catalase activity compared to the roots of SR1. The promutagen o-PDA applied on tobacco roots induced significantly higher levels of DNA damage in the CAT1AS transgenic line than in SR1, while after application of o-PDA on isolated root nuclei, no DNA damage could be detected. In the catalase-deficient line CAT1AS about six-fold lower concentrations of H(2)O(2) are sufficient to induce the same levels of DNA damage as in SR1. By contrast, after treatment of isolated root nuclei with H(2)O(2) no difference in the induced levels of DNA damage was observed between CAT1AS and SR1. The DNA damaging effect of EMS was not affected by the presence of catalase in the tobacco roots and the levels of DNA damage measured by the cellular and acellular assay were similar.Comparing the effects of genotoxic agents in both the cellular and acellular Comet assays may help to elucidate their mechanism of action. Differences in both systems may reveal the participation of scavengers and of repair and metabolic enzymes on the activity of the genotoxic agent and the role of the cell wall in preventing the agent from reacting with nuclear DNA.  相似文献   

14.
The response of bone marrow cells of CBA mice injected with 22.2, 222 and 592 kBq/animal to additional gamma-irradiation (3 Gy) for testing purposes was evaluated using SCG (Comet assay). A decrease in induction of DNA damage right after additional gamma-irradiation was determined. It correlated with bone marrow cell quantity and the tail length before additional gamma-irradiation. The results support the suggestion about the activation of DNA repair in bone marrow cells under exposure to 90Sr in vivo.  相似文献   

15.
We applied the alkaline version of the single-cell gel electrophoresis (comet assay) to seedlings of heterozygous tobacco (Nicotiana tabacum L. var. xanthi) treated with zinc acetate dihydrate (20 to 80 mM Zn2+ for 2 h or 2 to 12 mM Zn2+ for 24 h). A dose dependent increase in DNA damage expressed by the tail moment values were observed in nuclei isolated from the roots after 2 and 24 h Zn2+ treatments. In contrast, Zn2+ did not induce significant DNA damage to leaf nuclei, with the exception of 10 or 12 mM Zn2+ for 24 h. Somatic mutations, identified as dark green, yellow, and dark green/yellow double sectors on the pale green tobacco leaves were not detected after any Zn2+ treatments. The accumulation of Zn in roots and shoots was determined by inductively coupled plasma optical emission spectrometry and the Zn content in roots was about three times higher than in shoots.  相似文献   

16.
17.
Tobacco seedlings (Nicotiana tabacum var. xanthi) were treated for 24 h with mono-(2- and 3-CBA), di-(2,5- and 3,4-CBA), and tri-(2,4,6- and 2,3,5-CBA)-chlorobenzoic acids (CBAs) and with the mixture of polychlorinated biphenyls--Delor 103, or cultivated for 1 or 2 weeks in soil polluted with the CBAs. DNA damage in nuclei of leaves and roots was evaluated by the comet assay. A significant increase in DNA damage was observed only at concentrations of CBAs that caused withering of leaves or had lethal effects within 2-4 weeks after the treatments. As the application of CBAs did not induce somatic mutations, the induced DNA migration is probably caused by necrotic DNA fragmentation and not by DNA damage resulting in genetic alteration. In contrast, the application of the monofunctional alkylating agent ethyl methanesulphonate as a positive control resulted in a dose-response increase of DNA damage and an increase of somatic mutations. Thus, the EMS-produced DNA migration is probably associated with genotoxin-induced DNA fragmentation. The data demonstrate that the comet assay in plants should be conducted together with toxicity studies to distinguish between necrotic and genotoxin-induced DNA fragmentation. The content of 2,5-CBA in tobacco seedlings was measured by reverse-phase high pressure liquid chromatography.  相似文献   

18.
High inter- and intra-individual variability was reported in the level of DNA damage, both spontaneous and induced, when peripheral blood mononuclear leukocytes were used to perform the Comet assay. In order to find out the underlying causes for such variability, different subsets of T lymphocytes were isolated by immunomagnetic cell sorting. The level of DNA damage was evaluated with the alkaline version of the Comet assay by using three different parameters: tail moment, tail length and amount of DNA in the tail (%). Helper T cells (CD4+), cytotoxic T cells (CD8+), their negative fraction and the mixed cell population were evaluated both in untreated cells and after 10 and 20 microM H(2)O(2) treatments. Differences between cell subsets were only observed after H(2)O(2) treatment. The results indicate that, although CD4+ is the fraction with the highest induced level of genetic damage, this value is not high enough to explain the large inter- and intra-individual variability found.  相似文献   

19.
For most plant species growing in polluted areas no mutagenicity assays are available. We have studied the possibility of using the alkaline protocol of the Comet assay as a method for detecting induced DNA damage in wildly growing weeds. The monofuctional alkylating agent ethyl methanesulphonate (EMS) was applied on leaves of 10 weed species (ordered according to the diameter of the nuclei): Arabidopsis thaliana, Convolvulus arvensis, Bellis perennis, Urtica dioica, Lamium album, Chenopodium rubrum, Plantago media, Poa annua, Taraxacum officinale, and Agropyron repens. With increasing concentrations of EMS (2 to 10 mM) the DNA damage, expressed by the averaged median tail moment values, significantly increased in nuclei of all weeds studied. Using the Head Extent parameter of the Komet version 3.1, we have measured the diameter size of the nuclei of the 10 weed species either immediately after the isolation of the nuclei or after 20 or 45 min of treatment with alkaline buffer (pH > 13). According to the increase of the diameter of the nuclei (including the formed halo) resulting from the to alkaline buffer treatment, electrophoretic conditions (unwinding and electrophoresis time) for the Comet assay can be selected for the individual weed species.  相似文献   

20.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号