首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Common ragweed, Ambrosia artemisiifolia, is a highly allergenic North American plant that has become invasive in some parts of Europe, Asia and Australia following its introduction to many places in the world. Some earlier works suggested that a microcyclic autoecious rust fungus, Puccinia xanthii, known to infect A. artemisiifolia in the USA only, can be considered as a potential classical biocontrol agent (BCA) of this noxious weed in Europe and elsewhere. However, an extensive field survey did not reveal the presence of either P. xanthii or any other rusts on common ragweed in 14 US states and two Canadian provinces in 2002 and 2003. Moreover, P. xanthii infecting A. artemisiifolia has never been recorded in Canada, although it is known to occur on A. trifida and Xanthium spp. there. Nevertheless, herbarium specimens collected between 1855 and 1963 in five states of the USA confirmed the presence of P. xanthii on A. artemisiifolia. It is concluded that currently P. xanthii cannot be regarded as a promising BCA of A. artemisiifolia, although it did occur on common ragweed at least a few decades ago in the USA and some forms of this rust species have already been evaluated as effective BCAs of Xanthium in Australia.  相似文献   

3.
4.
What makes a mitochondrion?   总被引:1,自引:0,他引:1  
Experimental analyses of the proteins found in the mitochondria of yeast, humans and Arabidopsis have confirmed some expectations but given some surprises and some insights into the evolutionary origins of mitochondrial proteins.  相似文献   

5.
《Biological Control》2006,36(3):183-196
The topic of ecological, practical, and political considerations in the selection of weed targets for biological control has been widely discussed during the past two decades, mostly from the perspective of insect herbivores. For conceptual and practical purposes, plant pathogens have been treated in these discussions as if they are a subset of inoculative biocontrol agents, with little said about the inherent differences between pathogens and insects as biocontrol agents or the selection of weed targets for control by the inundative, bioherbicide strategy. Herein, I attempt to address the question of what makes a good biological control target for plant pathogens used as inoculative as well as inundative agents, basing my analysis on examples from the past three decades. Despite the small number of examples available for this analysis, the following generalizations can be made: (1) Weeds with robust capacity for vegetative regeneration are more difficult to control with pathogens than those that lack this trait. (2) A plant’s growth habit is not a reliable guide for target selection; weeds that have been successfully controlled include annual and biennial herbs, perennial shrubs, perennial vines, and trees, while numerous failures have been reported irrespective of the target’s growth habit or reproductive mode. (3) It is more challenging to control species with genetic heterogeneity and capacity for introgression than genetically homogeneous and reproductively conserved species. (4) Matching the target host’s susceptibility with the candidate pathogen’s virulence is of utmost importance for biocontrol success since host–pathogen interactions at the species and subspecies levels are often governed by single-gene differences (e.g., varietal specificity). (5) Practical and political considerations are central to the selection of targets for control with pathogens. (6) Demand from influential stakeholders for control and/or for a nonchemical or economically sustainable control typically drives the initiative as well as the continuance of biocontrol projects to their completion. (7) In the case of inundative, bioherbicide agents, the continuity and ultimate implementation of a project will be dictated by the prospects of economic returns from developing and using a pathogen. (8) The stakeholders’ perceptions of the effectiveness of a biocontrol program can be unpredictable, leading to conflicting views of “success.” In the final analysis, a good weed target for control by a pathogen is one that has strong stakeholder backing and the list of available pathogens for the target suggests a possibility of acceptable control at a cost that is competitive with those of other control options. While this conclusion is also applicable to target selection for insect biocontrol agents, it is more relevant for pathogens because of limited funding and personnel available for development of pathogens and the added cost and technological complexity of implementing bioherbicides compared to classical biocontrols.  相似文献   

6.
The topic of ecological, practical, and political considerations in the selection of weed targets for biological control has been widely discussed during the past two decades, mostly from the perspective of insect herbivores. For conceptual and practical purposes, plant pathogens have been treated in these discussions as if they are a subset of inoculative biocontrol agents, with little said about the inherent differences between pathogens and insects as biocontrol agents or the selection of weed targets for control by the inundative, bioherbicide strategy. Herein, I attempt to address the question of what makes a good biological control target for plant pathogens used as inoculative as well as inundative agents, basing my analysis on examples from the past three decades. Despite the small number of examples available for this analysis, the following generalizations can be made: (1) Weeds with robust capacity for vegetative regeneration are more difficult to control with pathogens than those that lack this trait. (2) A plant’s growth habit is not a reliable guide for target selection; weeds that have been successfully controlled include annual and biennial herbs, perennial shrubs, perennial vines, and trees, while numerous failures have been reported irrespective of the target’s growth habit or reproductive mode. (3) It is more challenging to control species with genetic heterogeneity and capacity for introgression than genetically homogeneous and reproductively conserved species. (4) Matching the target host’s susceptibility with the candidate pathogen’s virulence is of utmost importance for biocontrol success since host–pathogen interactions at the species and subspecies levels are often governed by single-gene differences (e.g., varietal specificity). (5) Practical and political considerations are central to the selection of targets for control with pathogens. (6) Demand from influential stakeholders for control and/or for a nonchemical or economically sustainable control typically drives the initiative as well as the continuance of biocontrol projects to their completion. (7) In the case of inundative, bioherbicide agents, the continuity and ultimate implementation of a project will be dictated by the prospects of economic returns from developing and using a pathogen. (8) The stakeholders’ perceptions of the effectiveness of a biocontrol program can be unpredictable, leading to conflicting views of “success.” In the final analysis, a good weed target for control by a pathogen is one that has strong stakeholder backing and the list of available pathogens for the target suggests a possibility of acceptable control at a cost that is competitive with those of other control options. While this conclusion is also applicable to target selection for insect biocontrol agents, it is more relevant for pathogens because of limited funding and personnel available for development of pathogens and the added cost and technological complexity of implementing bioherbicides compared to classical biocontrols.  相似文献   

7.
8.
9.
Allen MJ 《Fly》2007,1(6):307-310
Diapause is a dormant state that insects may undergo as a response to changing environmental conditions. In flies, like many insects inhabiting temperate zones, diapause occurs generally during the winter months when ambient temperatures are cool and food sources scarce. Whilst the environmental factors involved in determining diapause have been known for a long time, the genes and molecular events controling its initiation are poorly understood. Here I outline the factors that initiate diapause and highlight recent studies that implicate insulin signaling in its control.  相似文献   

10.
Fungal plant symbionts can be highly specialized on a limited range of host genotypes and species. Understanding the genetic basis of this specialization, the mechanisms governing its establishment and the relationship between specialization and speciation is a major challenge for evolutionary biologists (Timms & Read, 1999 ). A deeper knowledge of evolutionary plant–microbe interactions could be exploited to improve agricultural management, by bringing fungal biodiversity and fungal biomass under greater and more durable human control. Previous studies on pathogens have shown that effectors, that is, small secreted proteins that modulate plant physiology to favour host colonization, play a key role in infection of novel hosts (e.g., Inoue et al., 2017 ) or in host specialization (e.g., Liao et al. ( 2016 )). Like pathogens, endophytes also manipulate the physiology of their hosts and colonize novel hosts to which they specialize (Hardoim et al., 2015 ). These biological characteristics of endophytes raise the question of similarities in the protein arsenal contributing to the specialization of pathogens and endophytes. In this issue of Molecular Ecology, Schirrmann et al. ( 2018 ) used a combination of divergence genome scans and tests for positive selection to investigate the genetic basis of specialization of two subspecies of the symbiont Epichloë typhina occurring on two different grass hosts. Their analyses suggest a key role of effectors as determinants of host specialization. This study paves the way towards the comparative analysis of the genomics of speciation among plant symbionts.  相似文献   

11.
12.
Why do females increase parental effort when caring for theoffspring of attractive males? First, attractive males may bepoor fathers so that their females are compelled to increasetheir own contribution in order to fledge some young (the partner-compensationhypothesis). Second, females mated to attractive males may bewilling to increase their parental effort to reap high indirectbenefits for their offspring, and in turn males can decreasetheir own contribution (the differential allocation hypothesis[DAH]). We investigated these hypotheses in the penduline titRemiz pendulinus, a small passerine bird that has sequentialpolygamy by both sexes and strict uniparental care either bythe male or the female. We focused on two sexually selectedmale traits: nest size and nest-building behavior. We show thatmale care is unrelated to nest-building behavior, whereas femalesare more likely to care for the offspring of those males thatspend more time nest building. Females also more likely carefor the offspring of males that build large nests. Consequently,the reproductive success of males increases with nest size andnest-building behavior. Our results are consistent with theDAH and suggest that nest-building behavior and nest size areunder postmating sexual selection in penduline tits.  相似文献   

13.
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.  相似文献   

14.
Organic probe molecules have recently been used to define hydrophobic binding sites on the surface of proteins. It appears that the presence of water on the surface of a protein plays a crucial role in the interaction between that protein and its binding site.  相似文献   

15.
Ohayon S  Freiwald WA  Tsao DY 《Neuron》2012,74(3):567-581
Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting?a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, for example, nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition.  相似文献   

16.
The recent availability of high-resolution structures of two structurally highly homologous, but functionally distinct aquaporins from the same species, namely Escherichia coli AqpZ, a pure water channel, and GlpF, a glycerol channel, presents a unique opportunity to understand the mechanism of substrate selectivity in these channels. Comparison of the free energy profile of glycerol conduction through AqpZ and GlpF reveals a much larger barrier in AqpZ (22.8 kcal/mol) than in GlpF (7.3 kcal/mol). In either channel, the highest barrier is located at the selectivity filter. Analysis of substrate-protein interactions suggests that steric restriction of AqpZ is the main contribution to this large barrier. Another important difference is the presence of a deep energy well at the periplasmic vestibule of GlpF, which was not found in AqpZ. The latter difference can be attributed to the more pronounced structural asymmetry of GlpF, which may play a role in attracting glycerol.  相似文献   

17.
Plants that are subject to insect herbivory emit a blend of so‐called herbivore‐induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modelling approach to elucidate which physicochemical and physiological properties contribute to the information value of a HIPV. A leaf‐level HIPV synthesis and emission model is developed and parameterized to poplar. Next, HIPV concentrations within the canopy are inferred as a function of dispersion, transport and chemical degradation of the compounds. We show that the ability of HIPVs to reveal herbivory varies from almost perfect to no better than chance and interacts with canopy conditions. Model predictions matched well with leaf‐emission measurements and field and laboratory assays. The chemical class a compound belongs to predicted the signalling ability of a compound only to a minor extent, whereas compound characteristics such as its reaction rate with atmospheric oxidants, biosynthesis rate upon herbivory and volatility were much more important predictors. This study shows the power of merging fields of plant–insect interactions and atmospheric chemistry research to increase our understanding of the ecological significance of HIPVs.  相似文献   

18.
19.
Agricultural policies in the European Union (EU) are increasingly promoting organic management and integrated pest management (IPM) as environmentally friendly alternatives to high-input conventional management. While there is consensus that organic management is largely beneficial for biodiversity, including the natural enemies of crop pests, IPM has been much less scrutinized. We conducted a meta-analysis based on 294 observations extracted from 18 studies to compare the effects of conventional, IPM and organic management on biocontrol potential and herbivore pressure in olive, an important cash crop in the EU. Information about the management practices used was also compiled to assess differences in intensity between the three management strategies. Results suggest that IPM is predominantly based on intensive practices, employing chemical control rather than preventive measures as a first resort. Biocontrol potential and herbivore pressure were similar in conventional management and IPM. Moreover, biocontrol potential was higher in organic crops than in crops under IPM, especially when considering canopy-dwelling natural enemies. Although organic management enhanced biocontrol potential, it also benefitted some olive pests, and in both cases effects were more pronounced at warmer temperatures. Our results suggest that, in its current form, IPM might not significantly affect biocontrol potential or herbivore pressure when compared with conventional olive crop management. A shift to a more comprehensive implementation of IPM practices is thus needed, involving the use of proactive measures to promote natural enemies and regulate olive pests before resorting to chemical control. Moreover, greater use of non-chemical inputs might be required for effective regulation of olive pests in organic olive crops.  相似文献   

20.
The sequence of chimpanzee chromosome 22 is starting to help us to define the set of genetic attributes that are unique to humans, but interpreting the biological consequences of these remains a major challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号