首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Different environmental stimuli often use the same set of signaling proteins to achieve very different physiological outcomes. The mating and invasive growth pathways in yeast each employ a mitogen-activated protein (MAP) kinase cascade that includes Ste20, Ste11, and Ste7. Whereas proper mating requires Ste7 activation of the MAP kinase Fus3, invasive growth requires activation of the alternate MAP kinase Kss1. To determine how MAP kinase specificity is achieved, we used a series of mathematical models to quantitatively characterize pheromone-stimulated kinase activation. In accordance with the computational analysis, MAP kinase feedback phosphorylation of Ste7 results in diminished activation of Kss1, but not Fus3. These findings reveal how feedback phosphorylation of a common pathway component can limit the activity of a competing MAP kinase through feedback phosphorylation of a common activator, and thereby promote signal fidelity.  相似文献   

2.
3.
Pathway specificity is poorly understood for mitogen-activated protein kinase (MAPK) cascades that control different outputs in response to different stimuli. In yeast, it is not known how the same MAPK cascade activates Kss1 MAPK to promote invasive growth (IG) and proliferation, and both Fus3 and Kss1 MAPKs to promote mating. Previous work has suggested that the Kss1 MAPK cascade is activated independently of the mating G protein (Ste4)-scaffold (Ste5) system during IG. Here we demonstrate that Ste4 and Ste5 activate Kss1 during IG and in response to multiple stimuli including butanol. Ste5 activates Kss1 by generating a pool of active MAPKKK (Ste11), whereas additional scaffolding is needed to activate Fus3. Scaffold-independent activation of Kss1 can occur at multiple steps in the pathway, whereas Fus3 is strictly dependent on the scaffold. Pathway specificity is linked to Kss1 immunity to a MAPK phosphatase that constitutively inhibits basal activation of Fus3 and blocks activation of the mating pathway. These findings reveal the versatility of scaffolds and how a single MAPK cascade mediates different outputs.  相似文献   

4.
5.
Fus3p and Kss1p act at the end of a conserved signaling cascade that mediates numerous cellular responses for mating. To determine the role of Fus3p in different outputs, we isolated and characterized a series of partial-function fus3 point mutants for their ability to phosphorylate a substrate (Ste7p), activate Ste12p, undergo G1 arrest, form shmoos, select partners, mate, and recover. All the mutations lie in residues that are conserved among MAP kinases and are predicted to affect either enzyme activity or binding to Ste7p or substrates. The data argue that Fus3p regulates the various outputs assayed through the phosphorylation of multiple substrates. Different levels of Fus3p function are required for individual outputs, with the most function required for shmoo formation, the terminal output. The ability of Fus3p to promote shmoo formation strongly correlates with its ability to promote G1 arrest, suggesting that the two events are coupled. Fus3p promotes recovery through a mechanism that is distinct from its ability to promote G1 arrest and may involve a mechanism that does not require kinase activity. Moreover, catalytically inactive Fus3p inhibits the ability of active Fus3p to activate Ste12p and hastens recovery without blocking G1 arrest or shmoo formation. These results raise the possibility that in the absence of sustained activation of Fus3p, catalytically inactive Fus3p blocks further differentiation by restoring mitotic growth. Finally, suppression analysis argues that Kss1p contributes to the overall pheromone response in a wild-type strain, but that Fus3p is the critical kinase for all of the outputs tested.  相似文献   

6.
Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.  相似文献   

7.
Kss1 and Fus3 are mitogen-activated protein kinases (MAPKs or ERKs), and Ste7 is their activating MAPK/ERK kinase (MEK), in the pheromone response pathway of Saccharomyces cerevisiae. To investigate the potential role of specific interactions between these enzymes during signaling, their ability to associate with each other was examined both in solution and in vivo. When synthesized by in vitro translation, Kss1 and Fus3 could each form a tight complex (Kd of approximately 5 nM) with Ste7 in the absence of any additional yeast proteins. These complexes were specific because neither Hog1 nor Mpk1 (two other yeast MAPKs), nor mammalian Erk2, was able to associate detectably with Ste7. Neither the kinase catalytic core of Ste7 nor the phosphoacceptor regions of Ste7 and Kss1 were necessary for complex formation. Ste7-Kss1 (and Ste7-Fus3) complexes were present in yeast cell extracts and were undiminished in extracts prepared from a ste5delta-ste11delta double mutant strain. In Ste7-Kss1 (or Ste7-Fus3) complexes isolated from naive or pheromone-treated cells, Ste7 phosphorylated Kss1 (or Fus3), and Kss1 (or Fus3) phosphorylated Ste7, in a pheromone-stimulated manner; dissociation of the high-affinity complex was shown to be required for either phosphorylation event. Deletions of Ste7 in the region required for its stable association with Kss1 and Fus3 in vitro significantly decreased (but did not eliminate) signaling in vivo. These findings suggest that the high-affinity and active site-independent binding observed in vitro facilitates signal transduction in vivo and suggest further that MEK-MAPK interactions may utilize a double-selection mechanism to ensure fidelity in signal transmission and to insulate one signaling pathway from another.  相似文献   

8.
Chou S  Huang L  Liu H 《Cell》2004,119(7):981-990
Signaling specificity is fundamental for parallel mitogen-activated protein kinase (MAPK) cascades that control growth and differentiation in response to different stimuli. In Saccharomyces cerevisiae, components of the pheromone-responsive MAPK cascade activate Fus3 and Kss1 MAPKs to induce mating and Kss1 to promote filamentation. Active Fus3 is required to prevent the activation of the filamentation program during pheromone response. How Fus3 prevents the crossactivation is not clear. Here we show that Tec1, a cofactor of Ste12 for the expression of filamentation genes, is rapidly degraded during pheromone response. Fus3 but not Kss1 induces Tec1 ubiquination and degradation through the SCFCdc4 ubiquitin ligase. T273 in a predicted high-affinity Cdc4 binding motif is phosphorylated by Fus3 both in vitro and in vivo. Tec1T273V blocks Tec1 ubiquitination and degradation and allows the induction of filamentation genes in response to pheromone. Thus, Fus3 inhibits filamentous growth during mating by degrading Tec1.  相似文献   

9.
Mitogen-activated protein kinase kinase kinase-Ste11 (MAPKKK-Ste11), MAPKK-Ste7, and MAPK-Kss1 mediate pheromone-induced mating differentiation and nutrient-responsive invasive growth in Saccharomyces cerevisiae. The mating pathway also requires the scaffold-Ste5 and the additional MAPK-Fus3. One contribution to specificity in this system is thought to come from stimulus-dependent recruitment of the MAPK cascade to upstream activators that are unique to one or the other pathway. To test this premise, we asked if stimulus-independent signaling by constitutive Ste7 would lead to a loss of biological specificity. Instead, we found that constitutive Ste7 promotes invasion without supporting mating responses. This specificity occurs because constitutive Ste7 activates Kss1, but not Fus3, in vivo and promotes filamentation gene expression while suppressing mating gene expression. Differences in the ability of constitutive Ste7 variants to bind the MAPKs and Ste5 account for the selective activation of Kss1. These findings support the model that Fus3 activation in vivo requires binding to both Ste7 and the scaffold-Ste5 but that Kss1 activation is independent of Ste5. This scaffold-independent activation of Kss1 by constitutive Ste7 and the existence of mechanisms for pathway-specific promoter discrimination impose a unique developmental fate independently of any distinguishing external stimuli.  相似文献   

10.
Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network.  相似文献   

11.
12.
In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks.  相似文献   

13.
Signals transmitted by common components often elicit distinct (yet appropriate) outcomes. In yeast, two developmental options-mating and invasive growth-are both regulated by the same MAP kinase cascade. Specificity has been thought to result from specialized roles for the two MAP kinases, Kss1 and Fus3, and because Fus3 prevents Kss1 from gaining access to the mating pathway. Kss1 has been thought to participate in mating only when Fus3 is absent. Instead, we show that Kss1 is rapidly phosphorylated and potently activated by mating pheromone in wild-type cells, and that this is required for normal pheromone-induced gene expression. Signal identity is apparently maintained because active Fus3 limits the extent of Kss1 activation, thereby preventing inappropriate signal crossover.  相似文献   

14.
15.
16.
Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane.  相似文献   

17.
Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen‐activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant‐pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild‐type. Although the wild‐type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co‐regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway.  相似文献   

18.
The pheromone pathway is one of the mitogen activated protein kinase (MAPK) signaling pathways identified in Saccharomyces cerevisiae and is involved in both G1 cell cycle arrest and mating of cells. Fus3 functions at a branching point for G1 cell cycle arrest and mating responses in the signaling cascade, and the Fus3 MAPK uses components of both G1 arrest and mating routes as substrates. The Ste5 is a scaffold protein of the MAPK module and is essential for the activation of Fus3. However, it is not known how Ste5 is involved in the specific activation of Fus3 in G1 arrest and mating. In this study, we characterized several G1 arrest defective Ste5 mutants to better understand the roles of Ste5 in the regulation of Fus3. The level of Fus3 increased by treatment with alpha-factor. However, the alpha-factor effects were not readily apparent in the observation of yeast cells containing G1 arrest defective ste5 mutant. This suggests that Ste5 plays an essential role in Fus3 induction. Fus3 immune kinase assay of G1 arrest defective ste5 transformants revealed that Ste5 is important for substrate specificity of Fus3 for G1 arrest and/or mating.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号