首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Aims: This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave‐fructans extracted from Agave tequilana (Predilife). Methods and Results: Five different commercial prebiotics were compared using 24‐h pH‐controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short‐chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Conclusions: Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. Significance and Impact of the Study: This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.  相似文献   

6.
The processing of the high-mannose asparagine-linked oligosaccharides synthesized by first-trimester human placenta has been investigated. Tissue was pulsed for 1 h with [2-3H]mannose and chased for zero, 45, 90, and 180 min in media containing unlabeled mannose. Glycopeptides, prepared by Pronase digestion of the delipidated membrane pellets at each time point, were treated with endo-β-N-acetylglucosaminidase-H to release the high-mannose asparagine-linked oligosaccharides. The largest major processing intermediate isolated was Glc1Man9GlcNAc, which was converted into Man9GlcNAc, and then into Man8GlcNAc, Man7GlcNAc, Man6GlcNAc, and Man5GlcNAc. There was also a minor pathway in which mannosyl residues were removed prior to the glucose. By carrying out the detailed structural characterization of the individual processing intermediates, it was possible to demonstrate that processing of the Man9GlcNAc to Man5GlcNAc proceeded by the nonrandom removal of the α1,2-linked mannosyl residues. Specifically, of 12 possible sequences of removal of the four α1,2-linked mannosyl residues present in Man9GlcNAc, first-trimester human placenta utilized only two of these in the processing of asparagine-linked oligosaccharides. It is suggested that the limited number of processing pathways reflects a high degree of specificity of these reactions in human placenta.  相似文献   

7.
In this article, Armando Parodi presents a summary of the knowledge of the structure and biosynthesis of mammalian Asn-linked (N-linked) oligosacchorides and compares this with what is known in trypanosomatids.  相似文献   

8.
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme® (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.  相似文献   

9.
In order to purify the glycosyltransferases involved in the assembly of lipid-linked oligosaccharides and to be able to study the acceptor substrate specificity of these enzymes, methods were developed to prepare and purify a variety of lipid-linked oligosaccharides, differing in the structure of the oligosaccharide moiety. Thus, Man9 (GlcNAc)2-pyrophosphoryl-dolichol was prepared by isolation and enzymatic synthesis using porcine pancreatic microsomes, while Glc3Man9(GlcNAc)2-PP-dolichol was isolated from Madin-Darby canine kidney cells. Treatment of these oligosaccharide lipids with a series of selected glycosidases led to the preparation of Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6(Man alpha 1,3)Man alpha 1,6]Man beta 1,4GlcNAc beta 1,4GlcNAc-PP-dolichol; Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6]Man beta 1,4GlcNAc beta 1, 4GlcNac-PP-dolichol; and Man alpha 1,6(Man alpha 1,3)Man alpha 1, 6[Man alpha 1,3]Man beta 1,4GlcNAc-beta 1,4GlcNAc-PP-dolichol. The preparation, isolation, and characterization of each of these lipid-linked oligosaccharide substrates are described.  相似文献   

10.
In the presence of exogenous dolichyl phosphate mannosyl transferase activity towards dolichyl phosphate was nearly 3-fold higher in microsomes from pig embryonic liver compared to that from adult liver. After incubation of microsomes from embryonic liver with UDP-N-acetylglucosamine and GDP-[14C]mannose lipid-linked tri- to undecasaccharides were discovered in CHCl3-CH3OH (2:1, v/v) and CHCl3-CH3OH-H2O (1:1:0.3, by vol) extracts. The main proportion of the radioactivity was incorporated into penta-, sexta and undecasaccharides. Amphomycin at concentration 500 micrograms/ml inhibited almost completely dolichyl phosphate mannose synthesis in embryonic liver microsomes without inhibition the formation of lipid-linked penta- and sextasaccharides. It was suggested that mannose transferred to lipid-linked tetra- to heptasaccharides comes from GDP-mannose but not from dolichyl phosphate mannose.  相似文献   

11.
Phosphoglycerol transferase I, an enzyme of the inner, cytoplasmic membrane of Escherichia coli, catalyzes the in vitro transfer of phosphoglycerol residues from phosphatidylglycerol to membrane-derived oligosaccharides or to the model substrate arbutin (p-hydroxyphenyl-beta-D-glucoside). The products are a phosphoglycerol diester derivative of membrane-derived oligosaccharides or arbutin, respectively, and sn-1,2-diglyceride (B. J. Jackson and E. P. Kennedy, J. Biol. Chem. 258:2394-2398, 1983). Because this enzyme has its active site on the outer aspect of the inner membrane, it also catalyzes the transfer of phosphoglycerol residues to arbutin added to the medium (J.-P. Bohin and E. P. Kennedy, J. Biol. Chem. 259:8388-8393, 1984). When strains bearing the dgk mutation, which are defective in the enzyme diglyceride kinase, are grown in medium containing arbutin, they accumulate large amounts of sn-1,2-diglyceride, a product of the phosphoglycerol transferase I reaction. Growth is inhibited under these conditions. A further mutation in such a dgk strain, leading to the loss of phosphoglycerol transferase I activity, should result in the phenotype of arbutin resistance. We have exploited this fact to obtain strains with such mutations, designated mdoB, that map near min 99. Such mutants lack detectable phosphoglycerol transferase I activity, cannot transfer phosphoglycerol residues to arbutin in vivo, and synthesize membrane-derived oligosaccharides devoid of phosphoglycerol residues. These findings offer strong genetic support for the function of phosphoglycerol transferase I in membrane-derived oligosaccharide biosynthesis.  相似文献   

12.
13.
The asparagine-linked oligosaccharides on bovine lutropin (bLH) are unusual, containing GalNAc and sulfate but no galactose or sialic acid. Oligosaccharides from metabolically radiolabeled or purified bLH consist of non- (neutral), mono- (S-1), and di- (S-2) sulfated structures. We have previously shown that S-2 is a complex type oligosaccharide bearing two peripheral branches with the sequence SO4----GalNAc----GlcNAc attached to a typical Man3GlcNAc2 core (Green, E.D., van Halbeek, H., Boime, I., and Baenziger, J.U. (1985) J. Biol. Chem. 260, 15623-15630). We have now characterized the S-1 oligosaccharides on bLH which, in contrast to S-2, consist of several different structures of both the hybrid and complex types. The sulfate on S-1 oligosaccharides is located exclusively within the peripheral sequence SO4----GalNAc----GlcNAc. The GalNAc bearing hybrid structures, either with or without sulfate, cannot be processed to mono- or disulfated complex oligosaccharides due to the inability of either alpha-mannosidase II or GlcNAc-transferase II to act on GalNAc containing oligosaccharides. Since both Gal and GalNAc are added to oligosaccharides on some pituitary hormones, for example bovine and ovine follitropin and human lutropin, the Gal- and GalNAc-transferases appear to be key elements in regulating the synthesis of sulfated oligosaccharides on bLH and the other pituitary glycoprotein hormones.  相似文献   

14.
The oligosaccharides previously bound to dolichol diphosphate were isolated from Saccharomyces cerevisiae cells incubated with [U-14C]glucose. Five compounds were obtained that migrated with RGlucose of 0.100, 0.120, 0.145, 0.180, and 0.215 on paper chromatography. All of them contained mannose and 2 N-acetylhexosamine residues. The substances that migrated with the three lower RGlucose values had, in addition, glucose units. The structure of the oligosacchardies was very similar if not identical with that of the oligosaccharides isolated from the dolichol diphosphate derivatives synthesized "in vitro" by yeast or rat liver particulate preparations or "in vivo" by dog thyroid or rat liver slices as judged by their migration on paper chromatography, monosaccharide composition, and degradation compounds produced by alpha-mannosidase treatment or acetolysis. The oligosaccharides previously bound to asparagine residues in proteins were isolated from yeast cells which had been pulsed with [U-14C]glucose and chased with medium containing the unlabeled monosaccharide. The samples taken after very short pulses contained four oligosaccharides that migrated with RGlucose of 0.100, 0.120, 0.145, and 0.180 on paper chromatography. The first three compounds contained glucose, mannose, and 2 N-acetylhexosamine residues whereas the one that migrated with a RGlucose of 0.180 was devoid of the former monosaccharide. Samples taken after short chase periods revealed that the compounds that migrated with the lower RGlucose values gradually disappeared and were converted to the oligosaccharide with the higher RGlucose value was they lost their glucose residues. Similar analysis as those mentioned above showed that the structures of these compounds were similar to those of the dolichol diphosphate-bound oligosaccharides. Samples taken after longer chase periods revealed that the oligosaccharide that migrated with a RGlucose of 0.180 was subsequently either enlarged by the addition of more mannose residues or trimmed to smaller sizes.  相似文献   

15.
Liver microsomes from pig embryos synthesized dolichyl pyrophosphate N-acetylglucosamine and converted it to dolichyl pyrophosphate N,N'-diacetylchitobiose. N-acetylglucosaminyl transferase activity towards dolichol was about 2-fold greater in microsomes from embryonic liver than in microsomes from adult liver. A maximum level of conversion of dolichyl pyrophosphate N-acetylglucosamine to dolichyl pyrophosphate N,N'-diacetylchitobiose was achieved at 5 mM concentration of unlabelled UDP-N-acetylglucosamine, while this conversion was negligible at lower UDP-N-acetylglucosamine concentrations (0.1 and 0.5 mM). The level of dolichyl phosphate, assessed by the level of dolichyl pyrophosphate N-acetylglucosamine synthesis was 2-fold higher in microsomes from embryonic liver than that in microsomes from adult liver. Tunicamycin (1 microgram/ml) inhibited completely the formation of dolichyl pyrophosphate N-acetyl-glucosamine in embryonic liver microsomes, while the inhibitory effect of UMP (1 mM) was about 70%.  相似文献   

16.
A supposed hybrid population ( Agave peacockii ) between Agave marmorata and Agave kerchovei in a semiarid ecosystem at Zapotitlán Salinas, in the Mexican State of Puebla, was investigated, and its hybrid status corroborated in morphometric terms. A Stepwise Discriminant Analysis of the ratios: Number of leaved Rosette diameter, Leaf width/Leaf length, Number of spines/Leaf length, Distance between the upper spine and the tip of the leaf/Leaf length, and Distance between the upper spine and the tip of the leaf/Number of spines, supported our hypothesis of the existence of these naturally occurring hybrids, which are intermediate and distinct from the parental species. A null model was constructed to contrast the real case with a possible artifact, and the results also supported our hypothesis. The possible meaning of this kind of hybridization is discussed.  相似文献   

17.
  • 1.1. A maximum rate of dolichyl phosphate [14C]glucose synthesis from 55-day embryos was achieved at 16nM concentration of exogenous dolichyl phosphate and exceeded about 3 times that without addition of dolichyl phosphate.
  • 2.2. The highest values of [14C]glucose incorporation from UDP-[14C]glucose into dolichyl phosphate [14C]glucose, dolichyl diphosphate [14C]Glc-oligosaccharides and proteins were reached at 5 min time point of incubation of liver microsomes both from embryos and sows.
  • 3.3. The radioactive incorporation into proteins was about 7-fold higher in liver microsomes from sows compared to that from embryos, probably due to the greater content of acceptor proteins in microsomes from sows.
  • 4.4. The enzymatic transfer of Glc3-oligosaccharide from a lipid carrier to endogenous protein acceptor in microsomes from pig embryonic and adult livers was considerably faster than the removal of glucose residues during the initial stages of processing of protein-bound oligosaccharides.
  • 5.5. One labelled compound was discovered in the Chcl3-Ch3Oh-H2O (1:1:0.3, by vol) extract after incubation of liver microsomes from embryos and sows with UDP-[14C]glucose. On the basis of its mobility on the chromatogram it appears to be GlcNAc2Man9Glc3.
  相似文献   

18.
The periplasmic glucans of Gram-negative bacteria, including the membrane-derived oligosaccharides (MDO) of Escherichia coli and the cyclic glucans of the Rhizobiaceae, are now recognized to be a family of closely related substances with important functions in osmotic adaptation and cell signaling. The synthesis of the beta-1,2-glucan backbone of MDO is catalyzed by a membrane-bound glucosyltransferase system previously shown to require UDP-glucose and (surprisingly) acyl carrier protein (Therisod, H., Weissborn, A. C., and Kennedy, E. P. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7236-7240). In the present study, no glucan intermediates bound to acyl carrier protein or to UDP could detected. The enzyme system, however, was found to be strongly inhibited by bacitracin and by amphomycin. Because the two antibiotics function by forming specific complexes with polyprenyl phosphates, their inhibitory effect suggests a prenol requirement for MDO biosynthesis. Furthermore, the activity of the glucosyltransferase was greatly stimulated by the addition of polyprenyl phosphates such as decaprenyl-P and dihydroheptaprenyl-P, but not by farnesyl-P. The same membrane preparations carry out the synthesis of polyprenyl-P-glucose, which is also stimulated by added polyprenyl-P, including farnesyl-P, the most active of those tested. Pulse chase experiments, however, indicate that the endogenous pool of polyprenyl-P-glucose cannot be an obligate intermediate in the MDO glucosyltransferase system.  相似文献   

19.
Previous work has shown that vesicular stomatitis virus-infected Chinese hamster ovary cells contain a major high molecular weight lipid-linked oligosaccharide which is transferred en bloc to protein during the formation of the asparagine-linked complex-type oligosaccharides of the vesicular stomatitis virus G protein (Tabas, I., Schlesinger, S., and Kornfeld, S. (1978) J. Biol. Chem. 253, 716-722). We now report the characterization of a second, lower molecular weight lipid-linked oligosaccharide. The oligosaccharide portion of this molecule was isolated and its structure was determined by methylation analysis, digestion with exoglycosidases, acetolysis and Smith periodate degradation to be: (formula: see text). Several lines of evidence are presented which indicate that this lipid-linked oligosaccharide is primarily involved in the assembly of the major lipid-linked oligosaccharide rather than in the direct glycosylation of proteins.  相似文献   

20.
Yeast membranes incorporate radioactivity from GDP[14C]mannose into various glycolipids. These can be separated by thin layer chromatography into at least seven components.The major component has been identified previously as dolichyl monophosphate mannose. Only one additional component is not sensitive to mild alkaline saponification, but is hydrolyzed instead under mild acidic conditios. This latter glycolipid has all the characteristics of a polyprenyl diphosphate oligosaccharide with a sugar moiety of more than 12 hexose units. It runs like dolichyl diphosphate derivatives on a DEAE column and evidence is presented that the lipid moiety is a polyprenol.When radioactive Dol-PP-di-N-acetylchitobiose is incubated with yeast membranes in the presence of non-radioactive GDPmannose a small amount of a larger lipid oligosaccharide is formed besides the previously-described Dol-PP-(GlcNAc2 mannose. This oligosaccharide has all the properties of the glycolipid described above. Its formation is greatly increased when Triton is omitted from the incubation. Radioactivity of the polyprenyl diphosphate [14C]oligosaccharide is transferred to ethanol-insoluble material, most likely endogenous membrane glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号