首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using pre-labelling rather than pulse-labelling studies to determine rates of replication, we have shown that coliphage 186 infection is accompanied by a depression in host DNA replication. We have isolated mutants of the phage gene involved and mapped them in the early region of the phage genome. Sequencing the mutants ultimately led us to the identification of the gene that we have named the dhr gene.  相似文献   

2.
The inability of coliphage 186 to infect productively a dnaA(Ts) mutant at a restrictive temperature was confirmed. However, the requirement by 186 for DnaA is indirect, since 186 can successfully infect suppressed dnaA (null) strains. The block to 186 infection of a dnaA(Ts) strain at a restrictive temperature is at the level of replication but incompletely so, since some 20% of the phage specific replication seen with infection of a dnaA+ host does occur. A mutant screen, to isolate host mutants blocked in 186-specific replication but not in the replication of the close relative coliphage P2, which has no DnaA requirement, yielded a mutant whose locus we mapped to the rep gene. A 186 mutant able to infect this rep mutant was isolated, and the mutation was located in the phage replication initiation endonuclease gene A, suggesting direct interaction between the Rep helicase and phage endonuclease during replication. DNA sequencing indicated a glutamic acid-to-valine change at residue 155 of the 694-residue product of gene A. In the discussion, we speculate that the indirect need of DnaA function is at the level of lagging-strand synthesis in the rolling circle replication of 186.  相似文献   

3.
DNA synthesis in coliphage 186-infected cells was investigated. Phage 186 appeared to inhibit host DNA synthesis early in infection. The subsequent synthesis of phage 186 DNA was dependent on the product of 186 gene A. The product of gene B controlled both the production of late 186 proteins and the cessation of 186 DNA synthesis, and the products of genes O and P had no influence on 186 DNA synthesis. The product of gene P controlled host cell lysis, and the product of gene O may have some regulatory function.  相似文献   

4.
5.
We have completed the sequence of the 186 early lytic region and established that this region encodes the four genes CP75, CP76, CP77 and CP78, with CP79 the first gene of the next region. Functions have been assigned to the four early genes.  相似文献   

6.
I Hooper  W H Woods    B Egan 《Journal of virology》1981,40(2):341-349
In contrast to results with injections by lambda and P2, the latent period for infection by coliphage 186 is extended when the host cell is UV irradiated before infection. We find that 186 replication is significantly delayed in such a cell, even though the phage itself has not been irradiated. In contrast, replication of the closely related phage P2 under the same conditions is not affected.  相似文献   

7.
8.
9.
10.
11.
We show that coliphage 186 infection is dependent upon host initiation functions, dnaA and dnaC, which differentiates the phage from lambda and P2. The possibility is therefore entertained that the delay in 186 replication seen after infection of UV-irradiated bacterial cells reflects the temporary unavailability of one or both these functions. Infections with P1 and Mu need host dnaC but not dnaA and show some sensitivity to preirradiation of the host but are not as sensitive as 186.  相似文献   

12.
Tertiary initiation of bacteriophage T4 DNA replication is resistant to the RNA polymerase inhibitor rifampicin and apparently involved in the activity of recombination hot spots in the T4 genome (Kreuzer, K. N., and Alberts, B. M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3345-3349). One of the origins that function by the tertiary mechanism maps at the promoter for gene uvs Y. A deletion and a linker-insertion mutation in the uvsY promoter/origin region were generated by in vitro manipulations and then placed into the T4 genome using the insertion/substitution system (Selick, H. E., Kreuzer, K. N., and Alberts, B. M. (1988) J. Biol. Chem. 263, 11336-11347). Both resulting phage strains are uvsY- mutants, but they differ in that one has a deletion of the minimal tertiary origin and the other does not. The effects of the uvsY mutations on tertiary origin activity were assayed by infecting tertiary origin plasmid-bearing Escherichia coli with the two phage mutants. The tertiary origin plasmids replicated extensively after infection by either uvsY- phage mutant, demonstrating that the uvsY protein is not required for tertiary initiation. The extent of plasmid replication was increased dramatically as a result of either mutation, indicating that the uvsY protein plays some negative role in either the initiation or subsequent processing of plasmid replicative intermediates. The phage strain with an origin deletion induced the replication of a tertiary origin plasmid with which it shared no homology. Therefore, plasmid-phage recombination is not required for the replication of tertiary origin plasmids. The replication of a tertiary origin plasmid is also shown to be independent of the phage genes uvsX, 59, and 46, but markedly reduced by mutations in the T4-induced topoisomerase.  相似文献   

13.
Magnoni F  Sala C  Forti F  Dehò G  Ghisotti D 《Plasmid》2006,56(3):216-222
The genetic element P4 propagates in its host Escherichia coli both as a satellite phage and as a plasmid. Two partially overlapping replicons coexist, namely replicon I and replicon II. The former is composed of two sites, ori1 and crr, and depends on P4 alpha gene product for replication. The P4 alpha protein has primase and helicase activities, and binds specifically to both ori1 and crr. Replicon II is composed of two sites, ori2 and crr, and its replication also depends on P4 alpha primase and helicase activities. In replicon II, the alpha protein binds only crr. Here we show that for replicon II the relative orientation of ori2 and crr is essential for replication to occur. Furthermore we delimit ori2 to a 22 bp region (6234-6255), internal to the alpha gene, sufficient for replicon II replication. We mutagenized this region and identified two mutants, which carry one and two base substitutions, respectively, that prevent replicon II replication. In electrophoretic mobility shift experiments of ori2, ori1, and crr DNA fragments with E. coli extracts, ori2 was not shifted, whereas both ori1 and crr were specifically bound, suggesting that other host protein(s), beside P4 alpha, are able to bind to these cis essential regions. Apparently, no binding to ori2 could be identified, thus suggesting that neither alpha nor other bacterial proteins specifically bind to this region.  相似文献   

14.
CP81 is a virulent Campylobacter group III phage whose linear genome comprises 132,454 bp. At the nucleotide level, CP81 differs from other phages. However, a number of its structural and replication/recombination proteins revealed a relationship to the group II Campylobacter phages CP220/CPt10 and to T4-type phages. Unlike the T4-related phages, the CP81 genome does not contain conserved replication and virion modules. Instead, the respective genes are scattered throughout the phage genome. Moreover, most genes for metabolic enzymes of CP220/CPt10 are lacking in CP81. On the other hand, the CP81 genome contains nine similar genes for homing endonucleases which may be involved in the attrition of the conserved gene order for the virion core genes of T4-type phages. The phage apparently possesses an unusual modification of C or G bases. Efficient cleavage of its DNA was only achieved with restriction enzymes recognizing pure A/T sites. Uncommonly, phenol extraction leads to a significant loss of CP81 DNA from the aqueous layer, a property not yet described for other phages belonging to the T4 superfamily.  相似文献   

15.
T4 phage and T4 ghosts inhibit f2 phage replication by different mechanisms   总被引:5,自引:0,他引:5  
Both T4 phage and DNA-free ghosts inhibit replication of RNA phage f2. Most but not all of the effects by T4 upon f2 growth can be blocked by the addition of rifampicin prior to T4 superinfection; by contrast, the inhibition of f2 synthesis by T4 ghosts cannot be blocked by rifampicin. This indicates that inhibition by intact T4 requires gene function, while inhibition by ghosts does not. There is a small, multiplicity-dependent inhibition by viable T4 on f2 growth in the presence of rifampicin which may be similar to the gene function-independent inhibition by T4 ghosts. With one viable T4 per cell, there appears to be no effect by viable T4 upon f2 growth which does not require T4 gene action. Moreover, increasing multiplicities of viable T4 appear to inhibit T4 replication as well.In the absence of rifampicin, pre-existing f2 single and double-stranded RNA are degraded after superinfection by viable T4, but remain stable after superinfection by ghosts. However, no new f2 RNA is synthesized after superinfection with either. In the presence of rifampicin, f2-specific protein synthesis is largely unaffected by viable T4, but is completely inhibited by ghosts. Both Escherichia coli, as well as f2-speciflc polysomes disappear in the presence of ghosts.We conclude that, at low multiplicities, T4 phage and T4 ghosts inhibit replication of f2 phage, and presumably host syntheses, by different mechanisms.  相似文献   

16.
In coliphage 186, 22 essential genes were defined by complementation studies with amber mutants. Eighteen genes were associated with phage morphogenesis: 11 with phage tail formation, and 7 with phage head formation. The remaining four genes are discussed in the accompanying paper (S. M. Hocking and J. B. Egan, J. Virol. 44:1068-1071, 1982).  相似文献   

17.
D3112 phage was shown to replicate via the process of coupled replication--transposition: the phage DNA is not excised from the chromosome after prophage induction and new phage copies insert into many different sites. The transposition is controlled by two D3112 early genes--A (mapped in the 1.5-3 kbp region) and B (3-4.5 kbp), and requires intact attL site (involvement of the phage right end attR not studied). D3112 is capable to transpose RP4 plasmid into the chromosome; both the D3112 and RP4 transpositions are rec-independent. The product of the early C gene which is not required for D3112 transposition has pleiotropic effect on the development of D3112 and is necessary for the process of D3112 DNA excision from the chromosome, for cell lysis as well as for mature phage production. We suggest that this gene is responsible for positive regulation of D3112 late genes expression, similar to the C gene of Mu phage or Q gene of lambda. Mutations in four D3112 late genes ts25, ts35, ts73 and ts110 do not affect transposition or excision processes. No detectable (less than 0.02 copies per cell) amount of linear or circular D3112 DNA is formed during the replication--transposition. Hence, in the course of replication and transposition processes D3112 genome has its ends permanently bound covalently to the chromosome. The excision of the D3112 DNA takes place at late stages.  相似文献   

18.
Under certain conditions the late genes of coliphage T4 may function in the absence of phage DNA replication. Quasi-late gene function is the function of certain late genes in the absence of both phage DNA replication and the product of the maturation gene 55. It does not depend on how phage DNA synthesis is prevented. Replication-uncoupled late gene function is late gene function from unreplicated DNA in the absence of phage ligase, and is still under the control of gene 55. It is most efficient if phage DNA replication is prevented by a mutation in the phage gene (43) for DNA polymerase. Both quasi-late gene function and replication-uncoupled late gene function are enhanced by the presence of mutations controlling a phage exonuclease (gene 46 or 47).  相似文献   

19.
B.subtilis phage M2 uses a protein, instead of RNA, as the primer of its DNA replication. Hence this protein encoded in the phage genome is called as the primer protein (PP). At the initiation of DNA replication, a hetero dimer complex with its own DNA polymerase and the PP supposed to interact with the terminal protein (TP), which is covalently bound to the template DNA (TP-DNA). PP contained an important adhesive amino acid sequence, Arg-Gly-Asp (RGD), near the carboxyl terminal. We have recently showed that the synthetic RGD peptide inhibited the transfection of phage M2. By site-directed mutagenesis, we introduced different amino acid into the RGD site of PP. These altered PP decreased obviously the priming activity in vitro.  相似文献   

20.
Prior observations of phage-host systems in vitro have led to the conclusion that susceptible host cell populations must reach a critical density before phage replication can occur. Such a replication threshold density would have broad implications for the therapeutic use of phage. In this report, we demonstrate experimentally that no such replication threshold exists and explain the previous data used to support the existence of the threshold in terms of a classical model of the kinetics of colloidal particle interactions in solution. This result leads us to conclude that the frequently used measure of multiplicity of infection (MOI), computed as the ratio of the number of phage to the number of cells, is generally inappropriate for situations in which cell concentrations are less than 10(7)/ml. In its place, we propose an alternative measure, MOI(actual), that takes into account the cell concentration and adsorption time. Properties of this function are elucidated that explain the demonstrated usefulness of MOI at high cell densities, as well as some unexpected consequences at low concentrations. In addition, the concept of MOI(actual) allows us to write simple formulas for computing practical quantities, such as the number of phage sufficient to infect 99.99% of host cells at arbitrary concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号