首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hansen JC  Ghosh RP  Woodcock CL 《IUBMB life》2010,62(10):732-738
Methylated CpG Binding Protein 2 (MeCP2) is a nuclear protein named for its ability to selectively recognize methylated DNA. Much attention has been focused on understanding MeCP2 structure and function in the context of its role in Rett syndrome, a severe neurodevelopmental disorder that afflicts one in 10,000-15,000 girls. Early studies suggested a connection between DNA methylation, MeCP2, and establishment of a repressive chromatin structure at specific gene promoters. However, it is now recognized that MeCP2 can both activate and repress specific genes depending on the context. Likewise, in the cell, MeCP2 is bound to unmethylated DNA and chromatin in addition to methylated DNA. Thus, to understand the molecular basis of MeCP2 functionality, it is necessary to unravel the complex interrelationships between MeCP2 binding to unmethylated and methylated regions of the genome. MeCP2 is unusual and interesting in that it is an intrinsically disordered protein, that is, much of its primary sequence fails to fold into secondary structure and yet is functional. The unique structure of MeCP2 is the subject of the first section of this article. We then discuss recent investigations of the in vitro binding of MeCP2 to unmethylated and methylated DNA, and the potential ramifications of this work for in vivo function. We close by focusing on mechanistic studies indicating that the binding of MeCP2 to chromatin results in compaction into local (secondary) and global (tertiary) higher order structures. MeCP2 also competes with histone H1 for nucleosomal binding sites. The recent finding that MeCP2 is found at near stoichiometric levels with nucleosomes in neuronal cells underscores the multiple modes of engagement of MeCP2 with the genome, which include the cooperative tracking of methylation density.  相似文献   

2.
Mutations in the methyl‐CpG‐binding protein 2 (MeCP2) cause Rett syndrome, a severe neurodevelopmental disease associated with ataxia and other post‐natal symptoms similar to autism. Much research interest has focussed on the implications of MeCP2 in disease and neuron physiology. However, little or no attention has been paid to how MeCP2 turnover is regulated. The post‐translational control of MeCP2 is of critical importance, especially as subtle increases or decreases in MeCP2 amounts can affect neuron morphology and function. The latter point is of particular importance for gene therapeutic approaches in which exogenous wild‐type MeCP2 is being introduced into diseased neurons. Further to this, we propose two hypotheses. The first hypothesis discusses the poly‐ubiquitin‐mediated post‐translational regulation of MeCP2 through its two PEST domains. The second hypothesis explores the use of histone deacetylase inhibitors to modulate the amounts of MeCP2 expressed in conjunction with the aforementioned therapeutic approaches.  相似文献   

3.
4.
Sun YE  Wu H 《Neuron》2006,49(3):321-323
Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder, which is primarily caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2). A number of MeCP2 target genes have been identified, including the neurotrophic factor BDNF; however, the functional relevance of these targets has not been established. In this issue of Neuron, Chang et al. provide the first in vivo evidence for a functional interaction between BDNF and MeCP2.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Methyl CpG binding protein 2 (MeCP2) is a basic protein that contains a DNA methyl binding domain. The mechanism by which the highly positive charge of MeCP2 and its ability to bind methylated DNA contribute to the specificity of its binding to chromatin has long remained elusive. In this paper, we show that MeCP2 binds to nucleosomes in a very similar way to linker histones both in vitro and in vivo. However, its binding specificity strongly depends on DNA methylation. We also observed that as with linker histones, this binding is independent of the core histone H3 N-terminal tail and is not affected by histone acetylation.  相似文献   

13.
14.
15.
Methyl CpG binding protein 2 (MeCP2) binds DNA, and has a preference for methylated CpGs and, hence, in cells, it accumulates in heterochromatin. Even though it is expressed ubiquitously MeCP2 is particularly important during neuronal maturation. This is underscored by the fact that in Rett syndrome, a neurological disease, 80% of patients carry a mutation in the MECP2 gene. Since the MECP2 gene lies on the X chromosome and is subjected to X chromosome inactivation, affected patients are usually chimeric for wild type and mutant MeCP2. Here, we present the generation and characterization of the first rat monoclonal MeCP2 specific antibodies as well as mouse monoclonal antibodies and a rabbit polyclonal antibody. We demonstrate that our antibodies are suitable for immunoblotting, (chromatin) immunoprecipitation and immunofluorescence of endogenous and ectopically expressed MeCP2. Epitope mapping revealed that most of the MeCP2 monoclonal antibodies recognize the C-terminal domain and one the N-terminal domain of MeCP2. Using slot blot analysis, we determined a high sensitivity of all antibodies, detecting amounts as low as 1 ng of MeCP2 protein. Moreover, the antibodies recognize MeCP2 from different species, including human, mouse, rat and pig. Lastly, we have validated their use by analyzing and quantifying X chromosome inactivation skewing using brain tissue of MeCP2 heterozygous null female mice. The new MeCP2 specific monoclonal antibodies described here perform well in a large variety of immunological applications making them a very valuable set of tools for studies of MeCP2 pathophysiology in situ and in vitro.  相似文献   

16.
MeCP2 is a highly abundant chromatin architectural protein with key roles in post-natal brain development in humans. Mutations in MeCP2 are associated with Rett syndrome, the main cause of mental retardation in girls. Structural information on the intrinsically disordered MeCP2 protein is restricted to the methyl-CpG binding domain; however, at least four regions capable of DNA and chromatin binding are distributed over its entire length. Here we use small angle X-ray scattering (SAXS) and other solution-state approaches to investigate the interaction of MeCP2 and a truncated, disease-causing version of MeCP2 with nucleosomes. We demonstrate that MeCP2 forms defined complexes with nucleosomes, in which all four histones are present. MeCP2 retains an extended conformation when binding nucleosomes without extra-nucleosomal DNA. In contrast, nucleosomes with extra-nucleosomal DNA engage additional DNA binding sites in MeCP2, resulting in a rather compact higher-order complex. We present ab initio envelope reconstructions of nucleosomes and their complexes with MeCP2 from SAXS data. SAXS studies also revealed unexpected sequence-dependent conformational variability in the nucleosomes themselves.  相似文献   

17.
18.
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号