首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By the use of a prestalk- and stalk-specific monoclonal antibody, production of prestalk antigen was examined with non-glucose grown [G(-)] and glucose grown [G(+)] cells of Dictyostelium discoideum AX2. Unlike wild type (NC4), some growth phase cells of AX2 were reactive with the antibody. However, G(-) cells contained much more antigen than G(+) cells and the difference between the two remained during the preaggregation period. Besides glucose, the addition of metabolizable, but not nonmetabolizable sugars to both growth phase and preaggregation cells suppressed the production of the prestalk antigen on the one hand and stimulated the accumulation of glycogen on the other hand. When mixed, G(-) cells which produced more prestalk antigen during the preaggregation period remained prestalk cells after aggregation, while G(+) cells which produced less antigen were converted to prespore cells. G(+) cells collected at the stationary phase [G(+)st] were stronger in prestalk sorting tendency than G(+) cells but weaker than G(-) cells. The prestalk antigen content of G(+)st cells prior to aggregation was an intermediate between those of G(-) and G(+) cells. These lead to the conclusion that the prestalk antigen content of preaggregation cells reflect the tendency of the cells toward either prestalk or prespore differentiation after aggregation.  相似文献   

3.
By the use of a shake culture system, we have previously shown (Oyama, M., Okamoto, K., & Takeuchi, I. (1982) J. Cell Sci. 56, 223-232) that both cAMP and cAMP-dependent cell contact are required for prespore differentiation in Dictyostelium discoideum. The present study was undertaken to examine changes of the plasma membrane proteins during prespore differentiation in the shake culture system. Rabbit antibodies prepared against the plasma membrane fraction of the differentiated cells inhibited the reaggregation of the differentiated cells but not that of aggregation-competent cells. This result indicates that new contact sites are formed in the differentiated cells. By the combined use of the antibody-conjugated immuno-adsorbent with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changes of membrane proteins were analyzed with the cells incubated under various conditions. Three proteins were found to be present specifically in the differentiated cells only in the presence of cAMP, one of which (105K protein) appeared when cells became adhesive, but before prespore specific proteins were detected. Two others (80K and 58K proteins) appeared during prespore differentiation after cells formed agglomerates.  相似文献   

4.
Previous studies have shown that Dictyostelium discoideum spore coat proteins are found in prespore cells, which are localized to the posterior region of migrating slugs, and in the coats of mature spores. Prespore vesicles, identified by morphology and by staining with anti-D. mucoroides spore serum, are also localized in the posterior region of migrating slugs. Using antisera specific to the spore coat proteins, we show that the spore coat proteins are packaged in prespore vesicles. They are present in the vesicles as a complex which can be dissociated by denaturation. The anti-D. mucoroides spore serum reacts with at least five proteins in whole spore extracts including the spore coat proteins SP96 and SP70.  相似文献   

5.
Dictyostelium discoideum pseudoplasmodia exhibit a gradient of the cytosolic free Ca2+-concentration ([Ca2+]i) along their anterior-posterior axis involved in cell-type specific differentiation. [Ca2+]i is high in prestalk and low in prespore cells. We determined the content and localization of calcium and other elements in cryosectioned cells of pseudoplasmodia and fruiting bodies by X-ray microanalysis. Granular stores rich in Ca, Mg and P were identified. Average Ca was higher in prespore than prestalk granules (225vs 111 mmol/kg dry weight). Total Ca stored in granules was also higher in prespore than prestalk cells. The amount of P and S in granules differed between the two cell types indicating different store composition. In spores mean granular Ca was 120 mmol/kg dry weight. Stalk cells had smaller granules with 360 mmol Ca/kg dry weight. Complementary to microanalysis, vesicular Ca2+-fluxes were studied in fractionated cell homogenates. The rate of Ca2+-uptake was higher in pellet fractions of prespore than prestalk amoebae (4.7 vs 3.4 nmol/min x mg). Ca2+-release was greater in supernatant fractions from prestalk than prespore cells (16.5vs 7.7 nmol/10(8)cells). In summary, prestalk and prespore cells possess qualitatively different, high-capacity stores containing distinct amounts of Ca and probably being involved in regulation of the anterior-posterior [Ca2+]i-gradient.  相似文献   

6.
We have analyzed a developmentally and spatially regulated prestalk-specific gene and a prespore-specific gene from Dictyostelium. The prestalk gene, pst-cathepsin, encodes a protein highly homologous to the lysosomal cysteine proteinases cathepsin H and cathepsin B. The prespore gene encodes a protein with some homology to the anti-bacterial toxin crambin and has been designated beejin. Using the lambda gtll system, we have made polyclonal antibodies directed against a portion of the protein encoded by pst-cathepsin and other antibodies directed against the beejin protein. Both antibodies stain single bands on Western blots. By immunofluorescence and Western blots, pst-cathepsin is not present in vegetative cells or developing cells during the first approximately 10 h of development. It then appears with a punctate distribution in a subset of developing cells. Beejin is detected only after approximately 15 h of development, also in a subset of cells. Pst-cathepsin is distributed in the anterior approximately 1/10 of migrating slugs and on the peripheral posterior surfaces of slugs. Beejin is distributed in the posterior region of slugs. Expression of both pst-cathepsin and beejin can be induced in subsets of isolated cultured cells by a combination of conditioned medium and extracellular cAMP in agreement with the regulation of the mRNAs encoding these proteins. We have used the antibodies as markers for cell type to examine the ontogeny and the spatial distribution of prestalk and prespore cells throughout multicellular development. Our findings suggest that prestalk cell differentiation is independent of position within the aggregate and that the spatial localization of prestalk cells within the multicellular aggregate arises from sorting of the prestalk cells after their induction. We have also found a class of cell in developing aggregates that contains neither the prestalk nor the prespore markers.  相似文献   

7.
Dictyostelium discoideum prestalk cells and prespore cells from migrating slugs and culminating cell aggregates were isolated by Percoll density centrifugation. Several activities relevant to the generation, detection, and turnover of extracellular cyclic AMP (cAMP) signals were determined. It was found that: the two cell types have the same basal adenylate cyclase activity; prespore cells and prestalk cells are able to relay the extracellular cAMP signal equally well; intact prestalk cells show a threefold higher cAMP phosphodiesterase activity on the cell surface than prespore cells, whereas their cytosolic activity is the same; intact prestalk cells bind three to four times more cAMP than prespore cells; no large differences in cAMP metabolism and detection were observed between cells derived from migrating slugs and culminating aggregates. The results are discussed in relation to the possible morphogenetic role of extracellular cAMP in Dictyostelium cell aggregates. On the basis of the properties of the isolated cells we assume that a gradient of extracellular cAMP exists in Dictyostelium aggregates. This gradient appears to be involved in the formation and stabilization of the prestalk-prespore cell pattern.  相似文献   

8.
117 antigen is a glycoprotein expressed on the surface of D. discoideum cells at aggregation. It then disappears and is later re-expressed on the surface of a subpopulation of cells at culmination, the terminal differentiation stage (Sadeghi et al. 1987). A cDNA clone was used to show that the appearance of cell surface 117 antigen accurately reflects the expression of the 117 gene as measured by mRNA levels. It was also shown that during multicellular development there is a reciprocal relationship between the levels of 117 mRNA and the mRNA which codes for prespore surface glycoprotein, PsA. Dual parameter flow cytometry was used to demonstrate that the 117 antigen is found on the surface of maturing prespore cells after the PsA glycoprotein disappears, but that it is not found on mature spores. Using three monoclonal antibodies which identify respectively 117 antigen, PsA, and MUD3 antigen (a spore coat glycoprotein--probably Sp96), two new stages of final spore maturation were defined. These results indicate that there is a recapitulation of at least one aggregative cell surface glycoprotein in the prespore subpopulation of cells as they rise up the stalk during final spore development. This raises the possibility that culmination, which involves complex three dimensional morphogenetic movements not unlike those observed during animal embryogenesis, involves components of the two-dimensional pattern seen during aggregation.  相似文献   

9.
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation.  相似文献   

10.
11.
Abstract. Extracellular cAMP and a secreted factors have been known to be involved in prespore differentiation of Dictyostelium discoideum . Here we show that cAMP, a secreted factor(s) and some other interactions are required for prespore differentiation and that they work in completely different periods; a secreted factor(s) and other interactions are required only in the stages earlier than the cAMP-dependent stage. According to the results the process of prespore differentiation can be dissected into three sequential stages, stage I, II and III. The processes in stage I and II depend on high cell density. The requirement for high cell density in stage II could be replaced with a secreted factor(s) in conditioned medium, whereas it could not in stage I. The factor(s) in conditioned medium does not appear to be cAMP, ammonia, or methionine. In contrast to these two stages, the process in stage III, the last stage, proceeds even at low cell density if cAMP is supplied, where other interactions would be negligible. Therefore cells that have proceeded to the end of stage II are considered to have acquired a competence to differentiate to prespore cells without further cellular interactions other than cAMP.
cAMP pulses are not essential for the processes of any stage of prespore differentiation, since they proceed in the presence of caffeine, an inhibitor of cAMP pulse production, or in a mutant strain (Frigid A) which is deficient in cAMP relay systems.  相似文献   

12.
13.
The coordinate fusion of the prespore vesicles (PSVs) with the plasma membrane at the terminal stage of spore differentiation in Dictyostelium discoideum is an important example of developmentally regulated protein secretion. However, little is known about the composition of the vesicles, the molecular signals regulating secretion, or the mechanics of the membrane fusion. Taking a biochemical approach, we purified PSVs from different developmental stages. These preparations are highly enriched for their specific cargo of spore coat proteins while devoid of markers for other cellular compartments. Electron microscopic observations show that the PSV preparations are homogenous, with the soluble spore coat protein PsB/SP85 distributed throughout the lumen and the acid mucopolysaccharide localized in the central core. During development the PSVs increase in size and density concomitant with an increase in their protein cargo. The PSVs contain approximately 80 proteins, and we have identified a PSV-specific GTP-binding protein that may be involved in regulating vesicle fusion. The PSVs are not clathrin-coated and do not contain the SpiA spore coat protein. The PSV preparations are ideal for a global proteome analysis to identify proteins involved in signal reception, vesicle movement, docking, and fusion in this developmentally regulated organelle.  相似文献   

14.
15.
16.
When cells dissociated from Dictyostelium discoideum slugs were cultured in roller tubes, they formed agglomerates in which prestalk cells were initially dispersed but soon sorted out to the center and then moved to the edge to reconstitute the prestalk/prespore pattern. To examine the mechanism of sorting out, individual prestalk cells were traced by a videotape recorder. The radial component of the rate of movement toward the center of the presumptive prestalk region was calculated. Prestalk cells did not move randomly, but rather directionally toward the center. Their movement was pulsatile, with a period of ca. 15 min, and accompanied by occasional formation of cell streams, thus resembling the movement observable during cell aggregation. These results favor the idea that prestalk cells sort out to the prestalk region due to differential chemotaxis rather than differential adhesiveness. After formation of the prestalk/prespore pattern, the prestalk region rotated along the circumference of the agglomerates. This appears comparable to migration of slugs on the substratum, the rate of rotation being similar to that of slug migration. To examine the processes of pattern formation during development, washed vegetative cells were cultured in roller tubes. Prespore cells identified by antispore immunoglobulin initially appeared randomly within the agglomerates, but then nonprespore cells accumulated in the center and finally moved to the edge to establish the prestalk/prespore pattern, the processes being similar to those of pattern reconstruction with differentiated prestalk and prespore cells.  相似文献   

17.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

18.
19.
E Barklis  H F Lodish 《Cell》1983,32(4):1139-1148
  相似文献   

20.
Abstract. The expression of three prestalk cell-specific genes ( ecm A, ecm B and pDd26) was examined during in vitro differentiation in cell monolayers, in an attempt to explain the spatial heterogeneity of the prestalk region of migrating Dictyostelium pseudoplasmodia. Under these conditions ecm A, ecm B and pDd26 mRNAs were expressed sequentially in response to the addition of differentiation inducing factor-1 (DIF)-1, a temporal sequence similar to that observed during normal development. ecm A and ecm B mRNAs reached a maximum level 2–4 h after DIF-1 supplementation and then declined, whereas pDd26 mRNA levels increased more slowly but remained high 24 h after DIF addition. The increases in expression in response to increasing concentrations of either DIF-1 or DIF-2 were identical for the three genes, suggesting that neither alteration in DIF concentration nor species was an important determinant of spatial heterogeneity. Ammonia had the same inhibitory effect on the expression of all three prestalk cell-specific genes and stimulated the expression of the prespore cell-specific gene, D19. These results indicate that ammonia is also not responsible for the spatial heterogeneity of the prestalk cell region. In contrast, cyclic AMP had a differential effect on the expression of the prestalk cell specific genes: ecm A expression was variably stimulated, pDd26 expression was inhibited and ecm B expression was sometimes stimulated and sometimes inhibited. These results are difficult to explain in terms of a gradient of cyclic AMP in the prestalk region. We postulate that temporal responses are more important than spatial responses to cyclic AMP in regulating stalk cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号