首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.  相似文献   

2.
Otx2 and Gbx2 are among the earliest genes expressed in the neuroectoderm, dividing it into anterior and posterior domains with a common border that marks the mid-hindbrain junction. Otx2 is required for development of the forebrain and midbrain, and Gbx2 for the anterior hindbrain. Furthermore, opposing interactions between Otx2 and Gbx2 play an important role in positioning the mid-hindbrain boundary, where an organizer forms that regulates midbrain and cerebellum development. We show that the expression domains of Otx2 and Gbx2 are initially established independently of each other at the early headfold stage, and then their expression rapidly becomes interdependent by the late headfold stage. As we demonstrate that the repression of Otx2 by retinoic acid is dependent on an induction of Gbx2 in the anterior brain, molecules other than retinoic acid must regulate the initial expression of Otx2 in vivo. In contrast to previous suggestions that an interaction between Otx2- and Gbx2-expressing cells may be essential for induction of mid-hindbrain organizer factors such as Fgf8, we find that Fgf8 and other essential mid-hindbrain genes are induced in a correct temporal manner in mouse embryos deficient for both Otx2 and Gbx2. However, expression of these genes is abnormally co-localized in a broad anterior region of the neuroectoderm. Finally, we find that by removing Otx2 function, development of rhombomere 3 is rescued in Gbx2(-/-) embryos, showing that Gbx2 plays a permissive, not instructive, role in rhombomere 3 development. Our results provide new insights into induction and maintenance of the mid-hindbrain genetic cascade by showing that a mid-hindbrain competence region is initially established independent of the division of the neuroectoderm into an anterior Otx2-positive domain and posterior Gbx2-positive domain. Furthermore, Otx2 and Gbx2 are required to suppress hindbrain and midbrain development, respectively, and thus allow establishment of the normal spatial domains of Fgf8 and other genes.  相似文献   

3.
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.  相似文献   

4.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

5.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

6.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

7.
8.
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2-/-; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2-/-; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2 conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.  相似文献   

9.
10.
Cell mixing between the embryonic midbrain and hindbrain   总被引:1,自引:0,他引:1  
Segmentation is a mechanism that controls spatial organization along the anteroposterior axis of the neural tube and is particularly well characterized for the hindbrain region [1]. The generation of distinct and regionally specific structures from each rhombomere is achieved with the almost complete absence of cell mixing between neighboring rhombomeres [2, 3]. Here, we have examined cell mingling at the isthmus, where Otx2-expressing midbrain cells abut Gbx2-expressing hindbrain cells [4]. The sharp line of demarcation between the two expression domains suggests that this interface would be a compartment boundary, with no intermixing of cells, but this has not been directly tested. We have used short-term reaggregation assays to compare the adhesive properties of cells derived from midbrain and anterior hindbrain and cell labeling in vivo directly to monitor cell behavior at the midbrain/hindbrain boundary. Interestingly, our data demonstrate that, in contrast to the rhombomeres, differential adhesion does not seem to operate between the midbrain and anterior hindbrain and that cells move between the two territories. We conclude that these two subdivisions are not maintained by cell lineage restriction but by cells maintaining labile fates.  相似文献   

11.
The vertebrate hindbrain is subdivided into segments, termed neuromeres, that are units of gene expression, cell differentiation and behavior. A key property of such segments is that cells show a restricted ability to mix across segment borders -- termed lineage restriction. In order to address segmentation in the midbrain-hindbrain boundary (mhb) region, we have analyzed single cell behavior in the living embryo by acquiring time-lapse movies of the developing mhb region in a transgenic zebrafish line. We traced the movement of hundreds of nuclei, and by matching their position with the expression of a midbrain marker, we demonstrate that midbrain and hindbrain cells arise from two distinct cell populations. Single cell labeling and analysis of the distribution of their progeny shows that lineage restriction is probably established during late gastrulation stages. Our findings suggest that segmentation as an organizing principle in early brain development can be extended to the mhb region. We argue that lineage restriction serves to constrain the position of the mhb organizer cell population.  相似文献   

12.
The mouse homeobox gene, Gbx2, is expressed in discreet domains in the neural tube and plays a key role in forebrain and hindbrain development. Previous studies have demonstrated that mutual inhibition between Gbx2 and Otx2, which are respectively expressed in the anterior and posterior parts of the neural plate, positions the prospective midbrain–hindbrain junction. We describe here a conditional Gbx2 gain‐of‐function transgenic mouse line, Gbx2‐GOF, which expresses Gbx2 and red fluorescence protein, mCherry, upon Cre‐mediated recombination. In the absence of Cre, β‐galactosidase is broadly expressed in mouse embryos and adult brains carrying the transgene. By combining Gbx2‐GOF and En1Cre knock‐in allele, we activated expression of Gbx2 and mCherry throughout the mesencephalon (mes) and rhombomere 1 (r1). The ectopic expression of Gbx2 causes an anterior shift of the mes/r1 junction at embryonic day 10.5. Interestingly, we found that persistent expression of Gbx2 throughout the mes/r1 region largely abolishes expression of the isthmic organizer gene Fgf8, leading to deletion of the midbrain and cerebellum at later stages. Our data suggest that the juxtaposition of the expression domains of Gbx2 and Otx2 within the mes/r1 area is essential for the maintenance of Fgf8 expression. Furthermore, the Gbx2‐GOF transgenic line is suitable for functional study of Gbx2 during development. genesis 47:667–673, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Fgfr1-dependent boundary cells between developing mid- and hindbrain   总被引:5,自引:0,他引:5  
Signaling molecules regulating development of the midbrain and anterior hindbrain are expressed in distinct bands of cells around the midbrain-hindbrain boundary. Very little is known about the mechanisms responsible for the coherence of this signaling center. One of the fibroblast growth factor (FGF) receptors, Fgfr1, is required for establishment of a straight border between developing mid- and hindbrain. Here we show that the cells close to the border have unique features. Unlike the cells further away, these cells express Fgfr1 but not the other FGF receptors. The cells next to the midbrain-hindbrain boundary express distinct cell cycle regulators and proliferate less rapidly than the surrounding cells. In Fgfr1 mutants, these cells fail to form a coherent band at the boundary. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.  相似文献   

14.
15.
Summary: The neuron‐specific rat enolase (NSE) promoter was employed to establish transgenic mice expressing Cre recombinase in the central nervous system. Founders were crossed with dormant lacZ indicator mice and specificity as well as efficiency of Cre‐mediated transgene activation was determined by PCR and/or X‐gal staining. Whereas most transgenic lines exhibited Cre activity in early development resulting in widespread Cre activity, one line (NSE‐Cre26) expressed high levels of Cre in the developing and adult brain. With the exception of kidney, which showed occasionally low level of Cre activity, Cre recombination in double transgenics was restricted to the nervous system. Whole‐mount X‐gal staining of 9.5 dpc embryos indicated Cre‐mediated lacZ expression in forebrain, hindbrain, and along the midbrain flexure. A similar expression pattern was observed during later stages of embryogenesis (11.5–13.5 dpc). In adult mice, Cre recombinase was expressed in cerebral cortex and cerebellum and high levels of Cre‐mediated lacZ expression were observed in hippocampus, cortex, and septum. The NSE‐Cre26 transgenic mouse line thus provides a useful tool to specifically overexpress and/or inactivate genes in the developing and adult brain. genesis 31:118–125, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

16.
Buckiová D  Brown NA 《Teratology》1999,59(3):139-147
To study the mechanism of hyperthermia on the development of the rostral neural tube, we used a model in which closely-staged presomite 9.5-day rat embryos were exposed in culture to 43 degrees C for 13 min, and then cultured further for 12-48 hr. This treatment had little effect on the development of the rest of the embryo, but resulted in a spectrum of brain defects, the most severe being a lack of all forebrain and midbrain structures. Whole-mount in situ hybridisation was used to monitor the expression domains of Otx2, Emx2, Krox20, and hoxb1. These showed that there were no ectopic expression patterns, for any gene at any stage examined. Even in those embryos which apparently lacked all forebrain and midbrain structures, there were expression domains of Otx2 and Emx2 in the most rostral neural tissue, and these retained their nested dorso-ventral boundaries, showing that cells fated to form rostral brain were not wholly eliminated. Thus, heat-induced rostral neural tube truncation is of a quite different mechanism from the respecification proposed for retinoic acid, despite their very similar phenotypes. In the hindbrain region of treated embryos, we observed decreased intensity of Krox20, staining and an abnormal relationship developed between the position of hoxb1 expression and the otocyst and pharyngeal arches. In the most extreme cases, this domain was shifted to be more caudal than the rostral edge of the otocyst, while the otocyst retained its normal position relative to the pharyngeal arches. We interpret this as a growth imbalance between neuroepithelium and overlying tissues, perhaps due to a disruption of signals from the midbrain/hindbrain boundary.  相似文献   

17.
Members of different vertebrate species share a number of developmental mechanisms and control genes, suggesting that they have similar genetic programs of development. We compared the expression patterns of the Pax-2 protein in Mus musculus and Brachydanio rerio to gain a better understanding of the evolution of developmental control genes. We found that the tissue specificity and the time course of Pax-2 expression relative to specific developmental processes are remarkably similar during the early development of the two organisms. The brain, the optic stalk, the auditory vesicle, the pronephros, and single cells in the spinal cord and the hindbrain express Pax-2 in both species. The Pax-2 expression domain in the prospective brain of E8 mouse embryos has not been described previously. Expression appears first during early neurulation at the junction between the midbrain and hindbrain. However, there are some differences in Pax-2 expression between the two species. Most notable, expression at the midbrain/hindbrain boundary is no longer detectable after E11 in the mouse. Using monoclonal antibodies, we could exclude that primary neurons express Pax-2 in the zebrafish spinal cord. Our results confirm that Pax genes are highly conserved both in sequences and in expression patterns, indicating that they may have a function during early development that has been conserved during vertebrate evolution.  相似文献   

18.
19.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.  相似文献   

20.
Specification of the forebrain, midbrain and hindbrain primordia occurs during gastrulation in response to signals that pattern the gastrula embryo. Following establishment of the primordia, each brain part is thought to develop largely independently from the others under the influence of local organizing centers like the midbrain-hindbrain boundary (MHB, or isthmic) organizer. Mechanisms that maintain the integrity of brain subdivisions at later stages are not yet known. To examine such mechanisms in the anterior neural tube, we have studied the establishment and maintenance of the diencephalic-mesencephalic boundary (DMB). We show that maintenance of the DMB requires both the presence of a specified midbrain and a functional MHB organizer. Expression of pax6.1, a key regulator of forebrain development, is posteriorly suppressed by the Engrailed proteins, Eng2 and Eng3. Mis-expression of eng3 in the forebrain primordium causes downregulation of pax6.1, and forebrain cells correspondingly change their fate and acquire midbrain identity. Conversely, in embryos lacking both eng2 and eng3, the DMB shifts caudally into the midbrain territory. However, a patch of midbrain tissue remains between the forebrain and the hindbrain primordia in such embryos. This suggests that an additional factor maintains midbrain cell fate. We find that Fgf8 is a candidate for this signal, as it is both necessary and sufficient to repress pax6.1 and hence to shift the DMB anteriorly independently of the expression status of eng2/eng3. By examining small cell clones that are unable to receive an Fgf signal, we show that cells in the presumptive midbrain neural plate require an Fgf signal to keep them from following a forebrain fate. Combined loss of both Eng2/Eng3 and Fgf8 leads to complete loss of midbrain identity, resulting in fusion of the forebrain and the hindbrain primordia. Thus, Eng2/Eng3 and Fgf8 are necessary to maintain midbrain identity in the neural plate and thereby position the DMB. This provides an example of a mechanism needed to maintain the subdivision of the anterior neural plate into forebrain and midbrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号