首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hakki M  Geballe AP 《Journal of virology》2005,79(12):7311-7318
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.  相似文献   

2.
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.  相似文献   

3.
The NS5A nonstructural protein of hepatitis C virus (HCV) has been shown to inhibit the cellular interferon (IFN)-induced protein kinase R (PKR). PKR mediates the host IFN-induced antiviral response at least in part by inhibiting mRNA translation initiation through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). We thus examined the effect of NS5A inhibition of PKR on mRNA translation within the context of virus infection by using a recombinant vaccinia virus (VV)-based assay. The VV E3L protein is a potent inhibitor of PKR. Accordingly, infection of IFN-pretreated HeLa S3 cells with an E3L-deficient VV (VVDeltaE3L) resulted in increased phosphorylation levels of both PKR and eIF2alpha. IFN-pretreated cells infected with VV in which the E3L locus was replaced with the NS5A gene (VVNS5A) displayed diminished phosphorylation of PKR and eIF2alpha in a transient manner. We also observed an increase in activation of p38 mitogen-activated protein kinase in IFN-pretreated cells infected with VVDeltaE3L, consistent with reports that p38 lies downstream of the PKR pathway. Furthermore, these cells exhibited increased phosphorylation of the cap-binding initiation factor 4E (eIF4E), which is downstream of the p38 pathway. Importantly, these effects were reduced in cells infected with VVNS5A. NS5A was also found to inhibit activation of the p38-eIF4E pathway in epidermal growth factor-treated cells stably expressing NS5A. NS5A-induced inhibition of eIF2alpha and eIF4E phosphorylation may exert counteracting effects on mRNA translation. Indeed, IFN-pretreated cells infected with VVNS5A exhibited a partial and transient restoration of cellular and viral mRNA translation compared with IFN-pretreated cells infected with VVDeltaE3L. Taken together, these results support the role of NS5A as a PKR inhibitor and suggest a potential mechanism by which HCV might maintain global mRNA translation rate during early virus infection while favoring cap-independent translation of HCV mRNA during late infection.  相似文献   

4.
The recent emergence of several new coronaviruses, including the etiological cause of severe acute respiratory syndrome, has significantly increased the importance of understanding virus-host cell interactions of this virus family. We used mouse hepatitis virus (MHV) A59 as a model to gain insight into how coronaviruses affect the type I alpha/beta interferon (IFN) system. We demonstrate that MHV is resistant to type I IFN. Protein kinase R (PKR) and the alpha subunit of eukaryotic translation initiation factor are not phosphorylated in infected cells. The RNase L activity associated with 2',5'-oligoadenylate synthetase is not activated or is blocked, since cellular RNA is not degraded. These results are consistent with lack of protein translation shutoff early following infection. We used a well-established recombinant vaccinia virus (VV)-based expression system that lacks the viral IFN antagonist E3L to screen viral genes for their ability to rescue the IFN sensitivity of the mutant. The nucleocapsid (N) gene rescued VVDeltaE3L from IFN sensitivity. N gene expression prevents cellular RNA degradation and partially rescues the dramatic translation shutoff characteristic of the VVDeltaE3L virus. However, it does not prevent PKR phosphorylation. The results indicate that the MHV N protein is a type I IFN antagonist that likely plays a role in circumventing the innate immune response.  相似文献   

5.
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.  相似文献   

6.
T Munder  H Küntzel 《FEBS letters》1989,242(2):341-345
Functional mapping of the cell cycle START gene CDC25 has revealed two domains which are dispensable for viability (germination and growth in glucose media), but are essential for sporulation and differentially involved in glucose-induced cAMP signaling. The transient rise of cAMP is completely prevented by various deletions within the amino-terminal half (alpha domain) of the CDC25 gene product. In contrast, the deletion of the carboxy-terminal 38 residues (beta 2 domain) results in a rapid, but persisting, rise of cAMP. Our data suggest that the alpha domain of the CDC25 protein is involved in glucose signal transduction, whereas the beta 2 domain is required for downregulating the cAMP control chain.  相似文献   

7.
Mammalian translation initiation factor 4F (eIF4F) consists of three subunits, eIF4A, eIF4E, and eIF4G. eIF4G interacts directly with both eIF4A and eIF4E. The binding site for eIF4E is contained in the amino-terminal third of eIF4G, while the binding site for eIF4A was mapped to the carboxy-terminal third of the molecule. Here we show that human eIF4G possesses two separate eIF4A binding domains in the middle third (amino acids [aa] 478 to 883) and carboxy-terminal third (aa 884 to 1404) of the molecule. The amino acid sequence of the middle portion of eIF4G is well conserved between yeasts and humans. We show that mutations of conserved amino acid stretches in the middle domain abolish or reduce eIF4A binding as well as eIF3 binding. In addition, a separate and nonoverlapping eIF4A binding domain exists in the carboxy-terminal third (aa 1045 to 1404) of eIF4G, which is not present in yeast. The C-terminal two-thirds region (aa 457 to 1404) of eIF4G, containing both eIF4A binding sites, is required for stimulating translation. Neither one of the eIF4A binding domains alone activates translation. In contrast to eIF4G, human p97, a translation inhibitor with homology to eIF4G, binds eIF4A only through the amino-terminal proximal region, which is homologous to the middle domain of eIF4G.  相似文献   

8.
White SD  Jacobs BL 《Journal of virology》2012,86(10):5895-5904
Vaccinia virus (VACV) encodes a multifunctional protein, E3L, that is necessary for interferon (IFN) resistance in cells in culture. Interferon resistance has been mapped to the well-characterized carboxy terminus of E3L, which contains a conserved double-stranded RNA binding domain. The amino terminus of E3L has a Z-form nucleic acid binding domain, which has been shown to be dispensable for replication and IFN resistance in HeLa and RK13 cells; however, a virus expressing E3L deleted of the amino terminus has reduced pathogenicity in an animal model. In this study, we demonstrate that the pathogenicity of a virus expressing E3L deleted of the amino terminus was fully rescued in type I IFN receptor knockout (IFN-α/βR(-/-)) mice. Furthermore, this virus was IFN sensitive in primary mouse embryo fibroblasts (MEFs). This virus induced the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) in MEFs in an IFN-dependent manner. The depletion of double-stranded RNA-dependent protein kinase (PKR) from these MEFs restored the IFN resistance of this virus. Furthermore, the virus expressing E3L deleted of the amino terminus was also IFN resistant in PKR(-/-) MEFs. Thus, our data demonstrate that the amino terminus of E3L is necessary to inhibit the type I IFN response both in mice and in MEFs and that in MEFs, the amino terminus of E3L functions to inhibit the PKR pathway.  相似文献   

9.
The cellular response to viral infection often includes activation of pathways that shut off protein synthesis and thereby inhibit viral replication. In order to enable efficient replication, many viruses carry genes such as the E3L gene of vaccinia virus that counteract these host antiviral pathways. Vaccinia virus from which the E3L gene has been deleted (VVDeltaE3L) is highly sensitive to interferon and exhibits a restricted host range, replicating very inefficiently in many cell types, including human fibroblast and U373MG cells. To determine whether human cytomegalovirus (CMV) has a mechanism for preventing translational shutoff, we evaluated the ability of CMV to complement the deficiencies in replication and protein synthesis associated with VVDeltaE3L. CMV, but not UV-inactivated CMV, rescued VVDeltaE3L late gene expression and replication. Thus, complementation of the VVDeltaE3L defect appears to depend on de novo CMV gene expression and is not likely a result of CMV binding to the cell receptor or of a virion structural protein. CMV rescued VVDeltaE3L late gene expression even in the presence of ganciclovir, indicating that CMV late gene expression is not required for complementation of VVDeltaE3L. The striking decrease in overall translation after infection with VVDeltaE3L was prevented by prior infection with CMV. Finally, CMV blocked both the induction of eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and activation of RNase L by VVDeltaE3L. These results suggest that CMV has one or more immediate-early or early genes that ensure maintenance of a high protein synthetic capacity during infection by preventing activation of the PKR/eIF2alpha phosphorylation and 2-5A oligoadenylate synthetase/RNase L pathways.  相似文献   

10.
BACKGROUND: The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS: The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS: RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.  相似文献   

11.
The vaccinia virus (VV) E3L gene, which encodes a potent inhibitor of the interferon (IFN)-induced, double-stranded RNA (dsRNA)-dependent protein kinase, PKR, is thought to be involved in the IFN-resistant phenotype of VV. The E3L gene products, p25 and p20, act as inhibitors of PKR, presumably by binding and sequestering activator dsRNA from the kinase. In this study we demonstrate that VV with the E3L gene specifically deleted (vP1080) was sensitive to the antiviral effects of IFN and debilitated in its ability to rescue vesicular stomatitis virus from the antiviral effects of IFN. Infection of L929 cells with E3L-minus virus led to rRNA degradation typical of activation of the 2'-5'-oligoadenylate synthetase/RNase L system, and extracts of infected cells lacked the PKR-inhibitory activity characteristic of wild-type VV. The reovirus S4 gene, which encodes a dsRNA-binding protein (sigma 3) that can also inhibit PKR activation by binding and sequestering activator dsRNA, was inserted into vP1080. The resultant virus (vP1112) was partially resistant to the antiviral effects of IFN in comparison with vP1080. Further studies demonstrated that transient expression of the reovirus sigma 3 protein rescued E3L-minus VV replication in HeLa cells. In these studies, rescue by sigma 3 mutants correlated with their ability to bind dsRNA. Finally, vP112 was also able to rescue the replication of the IFN-sensitive virus vesicular stomatitis virus in a manner similar to that of wild-type VV. Together, these results suggest that the reovirus S4 gene can replace the VV E3L gene with respect to interference with the IFN-induced antiviral activity.  相似文献   

12.
13.
14.
The Pasteurella multocida adenylate cyclase gene has been cloned and expressed in Escherichia coli. The primary structure of the protein (838 amino acids) deduced from the corresponding nucleotide sequence was compared with that of E. coli. The two enzymes have similar molecular sizes and, based on sequence conservation at the protein level, are likely to be organized in two functional domains: the amino-terminal catalytic domain and the carboxy-terminal regulatory domain. It was shown that P. multocida adenylate cyclase synthesizes increased levels of cyclic AMP in E. coli strains deficient in the catabolite gene activator protein compared with wild-type strains. This increase does not occur in strains deficient in both the catabolite gene activator protein and enzyme III-glucose, indicating that a protein similar to E. coli enzyme III-glucose is involved in the regulation of P. multocida adenylate cyclase. It also indicates that the underlying process leading to enterobacterial adenylate cyclase activation has been conserved through evolution.  相似文献   

15.
The 14.7-kilodalton protein (14.7K protein) encoded by the adenovirus (Ad) E3 region inhibits tumor necrosis factor alpha (TNF-alpha)-mediated lysis of cells in tissue culture experiments, but the relevance of this effect in vivo is incompletely understood. To examine the effect of the ability of the Ad 14.7K protein to block TNF lysis upon viral pathogenesis in a murine model, we cloned the 14.7K protein-encoding gene into vaccinia virus (VV), permitting its study in isolation from other Ad E3 immunomodulatory proteins. The gene for murine TNF-alpha was inserted into the same VV containing the 14.7K gene to ensure that each cell infected with the VV recombinant would express both the agonist (TNF) and its antagonist (14.7K). VV was utilized as the vector because it accommodates large and multiple inserts of foreign DNA with faithful, high-level expression of the protein products. In addition, infection of mice with VV induces disease with quantifiable morbidity, mortality, and virus replication. The results of intranasal infections of BALB/c mice with these VV recombinants indicate that the Ad 14.7K protein increases the virulence of VV carrying the TNF-alpha gene by reversing the attenuating effect of TNF-alpha on VV pathogenicity. This was demonstrated by increased mortality, pulmonary pathology, and viral titers in lung tissue following infection with VV coexpressing the 14.7K protein and TNF-alpha, compared with the control virus expressing TNF-alpha alone. These results suggest that the 14.7K protein, which is nonessential for Ad replication in tissue culture, is an immunoregulatory protein which functions in vivo to help counteract the antiviral effects of TNF-alpha.  相似文献   

16.
A detailed comparison of the gp70 proteins of cloned ecotropic Friend murine leukemia virus (FLV) and dual-tropic Friend mink focus-forming virus (FrMCF) was performed by analyzing the structural and immunological properties of amino- and carboxy-terminal domains of these molecules generated upon controlled trypsinization. The two gp70s gave characteristic fragmentation patterns; the amino-terminal fragments of FrMCF gp70 were smaller than the corresponding fragments of FLV and contained a trypsin site which resulted in a 19,000-dalton amino-terminal fragment not observed for FLV, whereas both molecules yielded an identically sized carboxy-terminal fragment. All amino-terminal fragments of both gp70 molecules contained an endo H-sensitive oligosaccharide chain; for FrMCF, a second endo H-sensitive carbohydrate was present as well at a carboxy-terminal site for approximately 50% of the molecules. Several aspects of the disulfide interactions of the two gp70s were conserved; in both cases the carboxy-terminal fragments were disulfide bonded to p15(E), there were no disulfide bonds between amino- and carboxy-terminal fragments, and the amino-terminal fragments exhibited a significant increase in mobility upon analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Analysis of the immunoreactivity of the different domains of the proteins by immunoprecipitation of the fragments with antisera prepared against xenotropic murine leukemia virus and feline leukemia virus gp70s indicated major differences in antigenicity for the amino-terminal domains of FLV and FrMCF gp70, whereas the carboxy-terminal domains were immunologically conserved. Similar analyses with antibodies specific for p15(E) and Pr15(E) demonstrate that these components are conserved as well. These data provide direct evidence that p15(E) and the C-terminal gp70 domain of FrMCF gp70 are related to the corresponding regions of the ecotropic FLV parent and indicate that the acquisition of MCF-specific properties is due to the replacement of the ecotropic amino-terminal gp70 domain with sequences related to those of xenotropic gp70s.  相似文献   

17.
During the last decades, research focused on vaccinia virus (VACV) pathogenesis has been intensified prompted by its potential beneficial application as a vector for vaccine development and anti-cancer therapies, but also due to the fear of its potential use as a bio-terrorism threat. Recombinant viruses lacking a type I interferon (IFN) antagonist are attenuated and hence good vaccine candidates. However, vaccine virus growth requires production in IFN-deficient systems, and thus viral IFN antagonists that are active in vitro, yet not in vivo, are of great value. The VACV E3 and influenza virus NS1 proteins are distinct double-stranded RNA-binding proteins that play an important role in pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. Based on the functional similarities between E3 and NS1, we investigated the ability of NS1 to replace the biological functions of E3 of VACV in both in vitro and in vivo systems. For this, we generated a VACV recombinant virus lacking the E3L gene, yet expressing NS1 (VVΔE3L/NS1). Our study revealed that NS1 can functionally replace E3 in cultured cells, rescuing the protein synthesis blockade, and preventing apoptosis and RNA breakdown. In contrast, in vivo the VVΔE3L/NS1 virus was highly attenuated after intranasal inoculation, as it was unable to spread to the lungs and other organs. These results indicate that there are commonalities but also functional differences in the roles of NS1 and E3 as inhibitors of the innate antiviral response, which could potentially be utilized for vaccine production purposes in the future.  相似文献   

18.
Rat Mx2 and rat Mx3 are two alpha/beta interferon-inducible cytoplasmic GTPases that differ in three residues in the amino-terminal third, which also contains the tripartite GTP-binding domain, and that differ in five residues in the carboxy-terminal quarter, which also contains a dimerization domain. While Mx2 is active against vesicular stomatitis virus (VSV), Mx3 lacks antiviral activity. We mapped the functional difference between Mx2 and Mx3 protein to two critical residues in the carboxy-terminal parts of the molecules. An exchange of either residue 588 or 630 of Mx2 with the corresponding residues of Mx3 abolished anti-VSV activity, and the introduction of the two Mx2 residues on an Mx3 background partially restored anti-VSV activity. These results are consistent with the facts that Mx2 and Mx3 have similar intrinsic GTPase activities and that the GTPase domain of Mx3 can fully substitute for the GTPase domain of Mx2. Nevertheless, the amino-terminal third containing the GTP-binding domain is necessary for antiviral activity, since an amino-terminally truncated Mx2 protein is devoid of anti-VSV activity. Furthermore, Fab fragments of a monoclonal antibody known to neutralize antiviral activity block GTPase activity by binding an epitope in the carboxy-terminal half of Mx2 or Mx3 protein. The results are consistent with a two-domain model in which both the conserved amino-terminal half and the less-well-conserved carboxy-terminal half of Mx proteins carry functionally important domains.  相似文献   

19.
《The Journal of cell biology》1990,111(5):1987-2003
We have generated a set of amino- and carboxy-terminal deletions of the neurofilament NF-M gene and determined the molecular consequences of forced expression of these mutant constructs in mouse fibroblasts. To follow the expression of mutant NF-M subunits in transfected cells, a 12 amino acid epitope (from the human c-myc protein) was expressed at the carboxy terminus of each mutant. We show that NF-M molecules missing up to 90 or 70% of the nonhelical carboxy-terminal tail or amino-terminal head domains, respectively, incorporate readily into an intermediate filament network comprised either of vimentin or NF-L, whereas deletions into either the amino- or carboxy-terminal alpha- helical rod region generate assembly-incompetent polypeptides. Carboxy- terminal deletions into the rod domain invariably yield dominant mutants which rapidly disrupt the array of filaments comprised of NF-L or vimentin. Accumulation of these mutant NF-M subunits disrupts vimentin filament arrays even when present at approximately 1% the level of the wild-type subunits. In contrast, the amino-terminal deletions into the rod produce pseudo-recessive mutants that perturb the wild-type NF-L or vimentin arrays only modestly. The inability of such amino-terminal mutants to disrupt wild-type subunits defines a region near the amino-terminal alpha-helical rod domain (residues 75- 126) that is required for the earliest steps in filament assembly.  相似文献   

20.
Functional Domains of the Rsp5 Ubiquitin-Protein Ligase   总被引:13,自引:2,他引:11       下载免费PDF全文
RSP5, an essential gene of Saccharomyces cerevisiae, encodes a hect domain E3 ubiquitin-protein ligase. Hect E3 proteins have been proposed to consist of two broad functional domains: a conserved catalytic carboxyl-terminal domain of approximately 350 amino acids (the hect domain) and a large, nonconserved amino-terminal domain containing determinants of substrate specificity. We report here the mapping of the minimal region of Rsp5 necessary for its essential in vivo function, the minimal region necessary to stably interact with a substrate of Rsp5 (Rpb1, the large subunit of RNA polymerase II), and the finding that the hect domain, by itself, is sufficient for formation of the ubiquitin-thioester intermediate. Mutations within the hect domain that affect either the ability to form a ubiquitin-thioester or to catalyze substrate ubiquitination abrogate in vivo function, strongly suggesting that the ubiquitin-protein ligase activity of Rsp5 is intrinsically linked to its essential function. The amino-terminal region of Rsp5 contains three WW domains and a C2 calcium-binding domain. Two of the three WW domains are required for the essential in vivo function, while the C2 domain is not, and requirements for Rpb1 binding and ubiquitination lie within the region required for in vivo function. Together, these results support the two-domain model for hect E3 function and indicate that the WW domains play a role in the recognition of at least some of the substrates of Rsp5, including those related to its essential function. In addition, we show that haploid yeast strains bearing complete disruptions of either of two other hect E3 genes of yeast, designated HUL4 (YJR036C) and HUL5 (YGL141W), are viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号