首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A panel of twenty independently derived clones of man-mouse somatic cell hybrids isolated from fusions involving eight different parent cell combinations simultaneously analyzed for human chromosomes, citrate synthase, and a large number of other enzyme markers firmly or tentatively assigned to individual human chromosomes have provided direct evidence for a firm assignment of the structural gene coding for citrate synthase (CS) to human chromosome 12.  相似文献   

2.
Summary Catechol-O-methyltransferase (COMT) plays an important role in the inactivation of catecholamines. It has been demonstrated that erythrocyte COMT activity is genetically determined and controlled by a major autosomal locus with two alleles. The recent development of a method which allows the detection of COMT isozymes directly in autoradiozymograms has provided the means to investigate the chromosome location of the gene by using somatic cell hybrids. We have found that a single form of the COMT enzyme is expressed in several mouse-human fibroblast cell lines. The data obtained from the segregation analysis of the COMT enzyme in these hybrids and their subclones have provided evidence for the location of a major gene for COMT activity on human chromosome 22.  相似文献   

3.
The presumed random and independent process of human chromosome segregation in man-mouse somatic cell hybrids was studied. The results of chromosome analysis on 196 cells from 15 related hybrid strains have provided the first convincing evidence that segregation of human chromosomes can be nonindependent and often concordant. Different human chromosomes were not retained with equal frequency in these hybrid clones. Some were present in 80% of all the cells, whereas others appeared in less than 10% of the same cells. Linear regression analysis was used to test for correlation of the frequencies of all pair-wise combinations of human chromosomes present in these hybrid clones. Twenty-two of 136 possible correlations were statistically significant, indicating that concordant segregation of particular pairs of human chromosomes is a rather frequent occurrence.  相似文献   

4.
Summary A correlation between the expression or absence of human glyoxalase I and chromosome 6 (as well its markers ME1, IPO-B, and PGM3) was observed in man-mouse somatic cell hybrids. This segregation pattern indicates that the GLO gene is situated on chromosome 6.
Zusammenfassung In Hybriden somatischer Zellen zwischen Maus und Mensch wurde eine Korrelation zwischen Vorhandensein bzw. Abwesenheit der menschlichen Glyoxalase I und von Chromosom 6 (sowie seinen Markern ME1, IPO-B und PGM3) ermittelt. Diese Korrelation spricht dafür, daß das GLO-Gen auf Chromosome 6 liegt.


Supported by the Deutsche Forschungsgemeinschaft BE 352/8 and GR 373/6.  相似文献   

5.
Shows  T. B.  Brown  J. A.  Eddy  R. L.  Byers  M. G.  Haley  L. L.  Cooper  E. S.  Goggin  A. P. 《Human genetics》1978,43(2):119-125
Summary A starch gel electrophoretic procedure is described that resolves peptidase S (PEPS) as well as the peptidases A, B, and C in man-rodent, rodent-rodent, and primate-rodent interspecific somatic cell hybrids. The interspecific PEPS cell hybrid phenotype can be resolved into a pattern which suggests that PEPS is composed of five or six identical subunits.Results are presented supporting assignment of the PEPS locus to chromosome 4 in man using man-mouse and man-Chinese hamster somatic cell hybrids. Human genes coding for peptidases A, B, C, and D were assigned to chromosome 18, 12, 1, and 19, respectively, confirming previous assignments. These somatic cell genetic data demonstrate the independent genetic control of the several human peptidases.This work was supported by NIH grants GM 20454 and HD 05196.  相似文献   

6.
We have used 16 human × mouse somatic cell hybrids containing a variable number of human chromosomes to demonstrate that the human α-globin gene is on chromosome 16. Globin gene sequences were detected by annealing purified human α-globin complementary DNA to DNA extracted from hybrid cells. Human and mouse chromosomes were distinguished by Hoechst fluorescent centromeric banding, and the individual human chromosomes were identified in the same spreads by Giemsa trypsin banding. Isozyme markers for 17 different human chromosomes were also tested in the 16 clones which have been characterized. The absence of chromosomal translocation in all hybrid clones strongly positive for the α-globin gene was established by differential staining of mouse and human chromosomes with Giemsa 11 staining. The presence of human chromosomes in hybrid cell clones which were devoid of human α-globin genes served to exclude all human chromosomes except 6, 9, 14 and 16. Among the clones negative for human α-globin sequences, one contained chromosome 2 (JFA 14a 5), three contained chromosome 4 (AHA 16E, AHA 3D and WAV R4D) and two contained chromosome 5 (AHA 16E and JFA14a 13 5) in >10% of metaphase spreads. These data excluded human chromosomes 2, 4 and 5 which had been suggested by other investigators to contain human globin genes. Only chromosome 16 was present in each one of the three hybrid cell clones found to be strongly positive for the human α-globin gene. Two clones (WAIV A and WAV) positive for the human α-globin gene and chromosome 16 were counter-selected in medium which kills cells retaining chromosome 16. In each case, the resulting hybrid populations lacked both human chromosome 16 and the α-globin gene. These studies establish the localization of the human α-globin gene to chromosome 16 and represent the first assignment of a nonexpressed unique gene by direct detection of its DNA sequences in somatic cell hybrids.  相似文献   

7.
Summary The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts.An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.A part of the results was presented at the Fifth International Conference on Human Gene Mapping, Edinburgh, July 1979 and reported as an abstract in the proceedings of this conference [Cytogenet Cell Genet 25:164 (1979)]  相似文献   

8.
9.
Chinese hamster X mouse hybrid cells segregating mouse chromosomes have been used to assign a gene for triosephosphate isomerase (TPI-1, EC 5.3.1.1, McKusick No. 19045) to mouse chromosome 6, and a gene for Glyoxalase-I (GLO-1, EC 4.4.1.5, McKusick No 13875) to mouse chromosome 17. The genes for TPI-1 and lactate dehydrogenase B are syntenic in man and probably so in the dog. It is therefore likely that they are syntenic also in the mouse. It is of interest then that there is a mouse gene, Ldr-1, on chromosome 6 that regulates the level of LDH B subunits in mouse erythrocytes. The locus for GLO-1 is closely linked to the major histocompatibility complex in man. Since the major histocompatibility complex in the mouse is present on chromosome 17, this locus and the Glo-1 locus are syntenic in the mouse as well. This finding adds to the number of autosomal gene pairs which are syntenic in both mouse and man and reinforces the belief that there is considerable conservation. of linkage groups during evolution.  相似文献   

10.
Summary Albumin is a developmentally regulated serum protein synthesized in the liver mainly during adulthood. Family studies using variant forms of albumin established autosomal linkage between albumin and group-specific component protein (GS). Since GC has been assigned to human chromosome 4, albumin can be indirectly assigned to the same chromosome; however no direct assignment has been made. Recently, the human albumin cDNA probe has been isolated and characterized. It thus permits a direct chromosomal assignment of the albumin gene in the human genome. When the cDNA probe was hybridized to the HindIII digested total human DNA, an intense band at 6.8 kb was present. When the probe was hybridized to the HindIII digested Chinese hamster CHO-K1 DNA, a less intense band at 3.5 kb was found, plus three other faint bands. When the probe was hybridized to a series of human/CHO-K1 cell hybrids retaining a complete hamster genome and various combinations of human chromosomes, it was evident that hybrids containing human albumin gene sequences could be readily distinguished from hybrids containing no human albumin gene. Analysis of 22 primary cell hybrids for the presence or absence of human albumin sequences has assigned the albumin gene to human chromosome 4. Similar results were obtained using another restriction endonuclease EcoR1. Thus, by direct assay of the genomic albumin gene sequences in the cell hybrids, we provide evidence for a direct assignment of the structural gene for human albumin to chromosome 4.  相似文献   

11.
12.
Summary Human coagulation factor XII (fXII), a serine protease synthesized in liver and active in plasma, is involved in a wide variety of functions, including blood coagulation, fibrinolysis, bradykinin and complement activation. A complementary DNA (597 bp) encoding amino acid-16 to amino acid 183 of fXII protein was used to determine the chromosomal location of the fXII gene. DNAs from hamster-human somatic cell hybrids were digested with restriction enzymes and hybridized with the fXII cDNA. By the Southern method it was shown that restriction fragments able to hybridize to fXII cDNA are present only in DNA extracted from clones retaining human chromosome 5.  相似文献   

13.
Summary Human transcobalamin II (TC2), a vitamin B12 binding serum protein, is synthesized and secreted into the medium by cells growing in vitro. Mouse-man somatic cell hybrids were analyzed in order to map the locus of TC2. The presence of human TC2 in the culture media was correlated with the results of genetic marker and chromosome analysis of the hybrid cells. Chromosome 22 showed 100% concordancy. However, chromosome 6 (90% concordancy) and chromosome 7 (96% concordancy) were not completely excluded. Meningioma cells obtained from patients heterozygous for TC2 showed a concomitant loss of one chromosome 22 and one of the TC2 alleles, strongly supporting the assignment to chromosome 22.  相似文献   

14.
15.
16.
Summary The human and rodent forms of glyoxalase II (hydroxyacylglutathione hydrolase, HAGH) can readily be separated by starch gel electrophoretic procedures. Fifty-one human-rodent somatic cell hybrid clones were examined for their human HAGH and for human enzyme markers whose genes are encoced on each autosome and the X chromosome. Sixteen clones were also examined for their human karyotypes. Human glyoxalase II segregated only with chromosome 16, demonstrating that the gene is located on this chromosome.  相似文献   

17.
Somatic cell hybrids between mouse and Chinese hamster fibroblasts have been used to identify the chromosome responsible for the synthesis of both mouse type I procollagen subunit chains (MCOLA1 and MCOLA2). Thirty-one separate hybrid clones and subclones from ten separate hybridization events were isolated in hypoxanthine-aminopterin-thymidine (HAT) selection medium and were used for detailed gene-mapping studies. ELISA and "Western blotting" immunochemical analysis were used to detect the production of mouse type I procollagen in each hybrid clone. Mouse and Chinese hamster chromosomes were identified in each hybrid clone by trypsin-Giemsa banding of metaphase chromosome spreads and by isozyme analysis. We have found that mouse type I procollagen production segregates concordantly with mouse superoxide dismutase-1, previously mapped to mouse chromosome 16, and with the presence of mouse chromosome 16 karyotypically. Western blotting immunochemical analysis of the separated mouse procollagen chains produced by each hybrid line demonstrated that apparently the genes for both subunit chains are located on the same chromosome. These studies, therefore, assign the structural genes for mouse type I procollagen pro alpha 1 (MCOLA1) and pro alpha 2 (MCOLA2) chains to mouse chromosome 16.  相似文献   

18.
19.
Human phosphofructokinase (PFK; EC 2.7.1.11) is under the control of three structural loci which encode muscle-type (M), live-type (L), and platelet-type (P) subunits; human diploid fibroblasts and leukocytes express all three loci. In order to assign human PFKM locus to a specific chromosome we have analyzed human x Chinese hamster somatic cell hybrids for the expression of human M subunits, using an anti-human M subunit-specific mouse monoclonal antibody. In 18 of 19 hybrids studied, the expression of the PFKM locus segregated concordantly with the presence of chromosome 1 (discordance rate 0.05) as indicated by chromosome and isozyme marker analysis. The discordance rates for all the other chromosomes were 0.32 or greater, indicating that the PFKM locus is on chromosome 1. For the regional mapping of PFKM, eight hybrids were studied that contained one of five distinct regions of chromosome 1. These results further localize the human PFKM locus to region cen leads to q32 chromosome 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号