首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible protein tyrosine phosphorylation, coordinately controlled by protein tyrosine kinases and phosphatases, is a critical element in signal transduction pathways regulating a wide variety of biological processes, including cell growth, differentiation, and tumorigenesis. We have previously reported that c-Src belonging to the Src family tyrosine kinase (SFK) becomes dephosphorylated at tyrosine 530 (Y530) and thereby activated during progestin-induced differentiation of human endometrial stromal cells (i.e., decidualization). In this study, to elucidate the role of decidual c-Src activation, we examined whether 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), both potent and selective SFK inhibitors, affected the ovarian steroid-induced decidualization in vitro. Unexpectedly, PP1 paradoxically increased the kinase activity of decidual c-Src together with dephosphorylation of Y530 in the presence of ovarian steroids. Concomitantly, PP1 enhanced morphological and functional decidualization, as determined by induction of decidualization markers, such as insulin-like growth factor binding protein-1 and prolactin. PP2 also advanced decidualization along with up-regulation of the active form of c-Src whose Y-530 was dephosphorylated. In contrast to PP1 and PP2, herbimycin A, a tyrosine kinase inhibitor with less specificity for SFKs, showed little enhancing effect on the expression of both IGFBP-1 and active c-Src. These results suggest that SFKs, including c-Src, may play a significant role in stromal cell differentiation, providing a clue for a possible therapeutic strategy to modulate endometrial function by targeting signaling pathway(s) involving SFKs.  相似文献   

2.
3.
Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 +/- 0.33 fold (P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 +/- 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, G(i) protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.  相似文献   

4.
Temporal and spatial regulation of the actin cytoskeleton is vital for cell migration. Here, we show that an epithelial cell actin-binding protein, villin, plays a crucial role in this process. Overexpression of villin in doxycyline-regulated HeLa cells enhanced cell migration. Villin-induced cell migration was modestly augmented by growth factors. In contrast, tyrosine phosphorylation of villin and villin-induced cell migration was significantly inhibited by the src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) as well as by overexpression of a dominant negative mutant of c-src. These data suggest that phosphorylation of villin by c-src is involved in the actin cytoskeleton remodeling necessary for cell migration. We have previously shown that villin is tyrosine phosphorylated at four major sites. To further investigate the role of tyrosine phosphorylated villin in cell migration, we used phosphorylation site mutants (tyrosine to phenylalanine or tyrosine to glutamic acid) in HeLa cells. We determined that tyrosine phosphorylation at residues 60, 81, and 256 of human villin played an essential role in cell migration as well as in the reorganization of the actin cytoskeleton. Collectively, these studies define how biophysical events such as cell migration are actuated by biochemical signaling pathways involving tyrosine phosphorylation of actin binding proteins, in this case villin.  相似文献   

5.
We studied the potential roles for endogenous interleukin-1beta (IL-1beta) and for several signaling pathways in the spontaneous induction in vitro of inducible nitric oxide synthase (iNOS) in endothelium-denuded rat aorta rings. Added IL-1beta augmented, whereas the IL-1beta receptor antagonist IL-1ra blocked, spontaneous iNOS induction. Furthermore, increases in IL-1beta mRNA preceded those of iNOS mRNA. Mitogen-activated protein kinase kinase and phosphatidyl inositol 3' kinase inhibition did not block iNOS induction, whereas nuclear factor kappaB inhibition did. The sarcoma virus tyrosine kinase (Src) family-selective inhibitor 4-amino-5(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) blocked the upregulation of IL-1beta mRNA and the subsequent induction of iNOS but not the induction of iNOS stimulated by exogenously added IL-1beta. In contrast, the non-Src inhibitors TP 47/AG 213 and genistein and the tyrosine phosphatase inhibitor vanadate did not affect the spontaneous upregulation of IL-1beta mRNA but blocked both the IL-1beta-mediated and spontaneous induction of iNOS. We conclude that 1) the upregulation of tissue IL-1beta, via a signaling pathway involving a Src family kinase, plays a key role in rat vascular iNOS induction and 2) non-Src tyrosine kinases play roles downstream from IL-1beta for iNOS induction.  相似文献   

6.
We have recently demonstrated that multiple signalling pathways are involved in thrombin-induced proliferation in rat astrocytes. Thrombin acts by protease-activated receptor-1 (PAR-1) via mitogen-activated protein kinase activity. Signalling includes both Gi/(betagamma subunits)-phosphatidylinositol 3-kinase and a Gq-phospholipase C/Ca2+/protein kinase C (PKC) pathway. In the present study, we investigated the possible protein tyrosine kinases which might be involved in thrombin signalling cascades. We found that, in astrocytes, thrombin can evoke phosphorylation of proline-rich tyrosine kinase (Pyk2) via PAR-1. This process is dependent on the increase in intracellular Ca2+ and PKC activity. Moreover, in response to thrombin stimulation Pyk2 formed a complex with Src tyrosine kinase and adapter protein growth factor receptor-bound protein 2 (Grb2), which could be coprecipitated. Furthermore, both thrombin-induced Pyk2 phosphorylation and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation can be attenuated by Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. From these data we conclude that PAR-1 uses Ca2+- and PKC-dependent Pyk2 to activate Src, thereby leading to ERK1/2 activation, which predominantly recruits Grb2 in rat astrocytes.  相似文献   

7.
8.
Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.  相似文献   

9.
Li T  Yu XJ  Zhang GY 《FEBS letters》2008,582(13):1894-1900
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that HPK1 is involved in c-Jun NH2-terminal kinase (JNK) signaling pathway by sequential activation of MLK3-MKK7-JNK3 after cerebral ischemia. Here, we used 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2) and MK801 to investigate the events upstream of HPK1 in ischemic brain injury. Immunoprecipitation and immunoblot results showed that PP2 and MK801 significantly decreased the activation of Src, HPK1, MLK3, JNK3 and c-Jun, respectively, during ischemia/reperfusion. Histology and TUNEL staining showed PP2 or MK801 protects against neuron death after brain ischemia. We speculate that this unique signaling pathway through the tyrosine phosphorylation of HPK1 promotes ischemic brain injury by activated Src via N-methyl-d-aspartate receptor and, ultimately, the activation of the MLK3-MKK7-JNK3 pathway after cerebral ischemia.  相似文献   

10.
Recently we reported that simultaneous treatment of NIH 3T3 cells with the combination of phorbol myristate acetate (PMA) and hydrogen peroxide (H2O2) resulted in synergistic activation of Raf-1 kinase (Lee, M., Petrovics, G., and Anderson, W. B. (2003) Biochem. Biophys. Res. Commun. 311, 1026-1033). In this study we have demonstrated that PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a potent and selective inhibitor of the Src-family tyrosine kinase, greatly potentiated the ability of PMA and/or H2O2 to activate Raf-1 kinase, whereas it blocked the tyrosine phosphorylation of Raf-1. Unlike PMA/H2O2 treatment, which showed transient activation, PP2-mediated Raf-1 activation was sustained and continued to increase through 4 h of treatment. Transient transfection studies with a dominant-negative mutant of Ras (N19Ras) indicated that this PP2-induced activation of Raf-1 was Ras-independent. Moreover, PP2 showed no effect on platelet-derived growth factor-induced Raf-1 activation. Interestingly, mutation of the reported Raf-1 Src family tyrosine kinase phosphorylation site by conversion of tyrosines 340 and 341 to phenylalanine (YY340/341FF Raf) had limited effect on the ability of PP2 to induce significant stimulation of Raf-1 kinase activity. Taken together, our results suggest that a tyrosine phosphorylation event is involved in the negative feedback regulation of Raf-1. Inhibition of a Src family tyrosine kinase by PP2 appears to alleviate this tyrosine kinase-mediated inhibition of Raf-1 and allow activating modification(s) of Raf-1 to proceed. This PP2 effect resulted in significant and sustained Ras-independent activation of Raf-1 by PMA and H2O2.  相似文献   

11.
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).  相似文献   

12.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

13.
Evidence accumulated in recent years has revealed a potential role for reactive oxygen species (ROS) in the pathophysiology of cardiovascular diseases. However, the precise mechanisms by which ROS contribute to the development of these diseases are not fully established. Previous work from our laboratory has indicated that exogenous hydrogen peroxide (H2O2) activates several signaling protein kinases, such as extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase B (PKB) in A10 vascular smooth muscle cells (VSMC). However, the upstream elements responsible for this activation remain unclear. Although a role for epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) in H2O2-induced ERK1/2 signaling has been suggested, the contribution of this PTK or other receptor or nonreceptor PTKs to PKB activation is not well defined in VSMC. In this study, we used pharmacological inhibitors to investigate the role of receptor and Src-family-PTKs in H2O2-induced PKB phosphorylation. AG1478, a specific inhibitor of EGFR, failed to attenuate the H2O2-induced increase in PKB Ser473 phosphorylation, whereas AG1024, an inhibitor of insulin-like growth factor type1 receptor (IGF-1R)-PTK, almost completely blocked this response. H2O2 treatment also enhanced tyrosine phosphorylation of the IGF-1Rbeta subunit, which was significantly inhibited by AG1024 pretreatment of cells. Furthermore, pharmacological inhibition of Src by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole(3,4-d) pyrimidine) decreased PKB phosphorylation. Moreover, H2O2-induced PKB phosphorylation was associated with increased tyrosine phosphorylation of c-Src and Pyk2 in an AG1024- and PP2-inhibitable manner. In conclusion, these data provide evidence of the contribution of IGF-1R-PTK in initiating H2O2-evoked PKB phosphorylation in A10 VSMC, with an intermediary role for c-Src and Pyk2 in this process.  相似文献   

14.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

15.
We have identified the Yes kinase in zebrafish eggs and investigated its role in development of the zebrafish embryo. In situ hybridization as well as immunofluorescence techniques demonstrated that Yes kinase is maternally expressed and is localized to the cortical region of the unfertilized egg. Fertilization resulted in concentration of Yes kinase to the blastodisc where it continued to be localized to the blastoderm cells through cleavage, gastrulation, and later development. Yes kinase activity was found to decrease abruptly at fertilization, then increase progressively during epiboly, and was maintained at high levels throughout gastrulation. The role of Yes kinase in development was tested by treating embryos with chemical protein tyrosine kinase (PTK) inhibitors such as 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) and by injection of antisense morpholinos. Both treatments resulted in the arrest of development at the beginning of the epiboly. Co-immunoprecipitation studies demonstrated that Yes kinase participates in a stable complex with focal adhesion kinase (FAK), which is phosphorylated in vitro. These results demonstrate that Yes kinase plays an important role in epiboly and indicate that Yes kinase participates in signaling by focal adhesion kinase during early development.  相似文献   

16.
The phenotypic properties of the endothelium are subject to modulation by oxidative stress, and the c-Jun N-terminal kinase (JNK) pathway is important in mediating cellular responses to stress, although activation of this pathway in endothelial cells has not been fully characterized. Therefore, we exposed endothelial cells to hydrogen peroxide (H(2)O(2)) and observed rapid activation of JNK within 15 min that involved phosphorylation of JNK and c-Jun and induction of AP-1 DNA binding activity. Inhibition of protein kinase C and phosphoinositide 3-kinase did not effect JNK activation. In contrast, the tyrosine kinase inhibitors, genistein, herbimycin A, and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) significantly attenuated H(2)O(2)-induced JNK activation as did endothelial cell adenoviral transfection with a dominant-negative form of Src, implicating Src as an upstream activator of JNK. Activation of JNK by H(2)O(2) was also inhibited by AG1478 and antisense oligonucleotides directed against the epidermal growth factor receptor (EGFR), implicating the EGFR in this process. Consistent with this observation, H(2)O(2) stimulated EGFR tyrosine phosphorylation and complex formation with Shc-Grb2 that was abolished by PP2, implicating Src in H(2)O(2)-induced EGFR activation. Tyrosine phosphorylation of the EGFR by H(2)O(2) did not involve receptor autophosphorylation at Tyr(1173) as assessed by an autophosphorylation-specific antibody. These data indicate that H(2)O(2)-induced JNK activation in endothelial cells involves the EGFR through an Src-dependent pathway that is distinct from EGFR ligand activation. These data represent one potential pathway for mediating oxidative stress-induced phenotypic changes in the endothelium.  相似文献   

17.
Recently we demonstrated that PP2 (4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a potent and selective inhibitor of the Src-family tyrosine kinase, markedly enhanced Ras-independent activation of Raf-1 by the combination of phorbol myristate acetate (PMA) and hydrogen peroxide (H(2)O(2)). We report here that Raf-1 knockdown cells were significantly more sensitive to treatment of PP2 than control cells. This PP2-induced growth inhibition was found to be linked to decreased ERK and p38 activity. Interestingly, the growth of Sprouty knockdown cells appeared to be inhibited at earlier time points of PP2 treatment when compared with control cells. Unexpectedly, siRNA-mediated knockdown of Spry2, which is known to modulate the Ras/Raf/MAPK signal through feedback regulation, resulted in decreased Raf-1 kinase activity. PP2 had limited effect on the ability of PMA/H(2)O(2) to induce significant phosphorylation of MEK/ERK proteins in both Spry2 knockdown and control cells, indicating that PP2-mediated activation of Raf-1 did not potentiate signaling through the downstream MEK/ERK pathway. Taken together our results suggest that Raf-1 signaling may be bypassed in PP2-treated cells by uncoupling from downstream MEK/ERK pathway.  相似文献   

18.
We found that engagement of beta(2) integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP + GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta(2) integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta(2) integrin-induced activation of p190RHOGAP: The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta(2) integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RHOGAP: Instead, the beta(2) integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta(2) integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP + GDP ratio recovered on RhoA immunoprecipitated from beta(2) integrin-stimulated cells. Thus, in neutrophils, beta(2) integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RHOA:  相似文献   

19.
Tanaka M  Kamata R  Sakai R 《The EMBO journal》2005,24(21):3700-3711
The interaction of the Eph family of receptor protein tyrosine kinase and its ligand ephrin family induces bidirectional signaling via the cell-cell contacts. Although most previous studies have focused on the function of Eph-ephrin pathways in the neural system and endothelial cells, this process also occurs in epithelial and cancer cells, of which the biological involvement is poorly understood. We show that ephrin-B1 creates an in vivo complex with adjacent claudin1 or claudin4 via the extracellular domains of these proteins. The cytoplasmic domain of ephrin-B1 was phosphorylated on tyrosine residues upon the formation of cell-cell contacts, possibly recognizing an intercellular adhesion of claudins. Phosphorylation of ephrin-B1 induced by claudins was abolished by the treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, an inhibitor of the Src family kinases. Moreover, overexpression of ephrin-B1 triggered consequent change in the level of cell-cell adhesion depending on its phosphorylation. These results suggest that ephrin-B1 mediated the cell-cell adhesion of epithelial and cancer cells via a novel Eph receptor-independent mechanism.  相似文献   

20.
PI3K (phosphoinositide 3-kinase) activity is involved in Ang (angiotensin) II-stimulated VSMC (vascular smooth muscle cell) growth and hypertrophy. In the present study, we demonstrate that the inhibition of PI3K in VSMCs by expression of a dominant-negative p85alpha mutant lacking the p110-binding domain (Deltap85), or by treatment of cells with LY294002, inhibited Ang II-stimulated PAI-1 (plasminogen activator inhibitor-1) mRNA expression. Using a GST (glutathione S-transferase) fusion protein containing the p85 N-terminal SH2 (Src homology 2) domain as 'bait' followed by MS/MS (tandem MS), we identified a 70 kDa fragment of the p70 PDGFR-beta (platelet-derived growth factor receptor-beta) as a signalling adapter that is phosphorylated and recruits the p85 subunit of PI3K after Ang II stimulation of AT1 (Ang II subtype 1) receptors on VSMCs. This fragment of the PDGFR-beta, which has a truncation of its extracellular domain, accounted for approx. 15% of the total PDGFR-beta detected in VSMCs with an antibody against its cytoplasmic domain. Stimulation of VSMCs with Ang II increased tyrosine-phosphorylation of p70 PDGFR-beta at Tyr751 and Tyr1021 and increased its binding to p85. PDGF also induced phosphorylation of p70 PDGFR-beta, a response inhibited by the PDGF tyrosine kinase selective inhibitor, AG1296. By contrast, Ang II-induced phosphorylation of the 70 kDa receptor was not affected by AG1296. Ang II-stimulated phosphorylation of the p70 PDGFR-beta was blocked by the AT1 receptor antagonist, candesartan (CV 11974) and was partially inhibited by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine}, an Src family kinase inhibitor. Our result suggests that the p70 PDGFR-beta functions as an adapter that recruits PI3K to the membrane upon AT1 receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号