首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new model system for the study of the SOS response has been developed. In this system the response is induced by blocking the replication fork at a Ter site located in pUC-derived plasmids. Blockage of the fork is dependent on the expression of the Ter binding protein, Tus, encoded on another plasmid, in which the tus gene is under the control of the ara promoter. SOS induction can, therefore, be controlled by arabinose. The extent of the SOS response was monitored by measuring the activity of β-galactosidase, expressed from a lacZ gene fused to the 5′ region of the sfiA gene, a typical SOS-responsive gene. Expression of the fusion gene is completely dependent on recA + and lexA + genes. Using this system, we found that the distance between the ori and Ter sites is directly correlated with the strength of SOS induction. The properties of this system are discussed.  相似文献   

2.
Stillman B 《Molecular cell》2008,30(3):259-260
The Kunkel laboratory has recently assigned polymerase (Pol) epsilon as the leading strand polymerase. In a recent issue of Molecular Cell, they now assign Pol delta as the lagging strand polymerase.  相似文献   

3.
Polymerase dynamics at the eukaryotic DNA replication fork   总被引:2,自引:0,他引:2  
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mutator phenotype for certain mispairs, allowing an unambiguous strand assignment for these enzymes. On the lagging strand, Pol delta corrects errors made by Pol alpha during Okazaki fragment initiation. During Okazaki fragment maturation, the extent of strand displacement synthesis by Pol delta determines whether maturation proceeds by the short or long flap processing pathway. In the more common short flap pathway, Pol delta coordinates with the flap endonuclease FEN1 to degrade initiator RNA, whereas in the long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase.  相似文献   

4.
5.
Eukaryotic DNA replication. Enzymes and proteins acting at the fork   总被引:7,自引:0,他引:7  
A complex network of interacting proteins and enzymes is required for DNA replication. Much of our present understanding is derived from studies of the bacterium Escherichia coli and its bacteriophages T4 and T7. These results served as a guideline for the search and the purification of analogous proteins in eukaryotes. model systems for replication, such as the simian virus 40 DNA, lead the way. Generally, DNA replication follows a multistep enzymatic pathway. Separation of the double-helical DNA is performed by DNA helicases. Synthesis of the two daughter strands is conducted by two different DNA polymerases: the leading strand is replicated continuously by DNA polymerase delta and the lagging strand discontinuously in small pieces by DNA polymerase alpha. The latter is complexed to DNA primase, an enzyme in charge of frequent RNA primer syntheses on the lagging strand. Both DNA polymerases require several auxiliary proteins. They appear to make the DNA polymerases processive and to coordinate their functional tasks at the replication fork. 3'----5'-exonuclease, mostly part of the DNA polymerase delta polypeptide, can perform proof-reading by excising incorrectly base-paired nucleotides. The short DNA pieces of the lagging strand, called Okazaki fragments, are processed to a long DNA chain by the combined action of RNase H and 5'----3'-exonuclease, removing the RNA primers, DNA polymerase alpha or beta, filling the gap, and DNA ligase, sealing DNA pieces by phosphodiester bond formation. Torsional stress during DNA replication is released by DNA topoisomerases. In contrast to prokaryotes, DNA replication in eukaryotes not only has to create two identical daughter strands but also must conserve higher-order structures like chromatin.  相似文献   

6.
DNA double-strand breaks (DSB) were shown to occur at the replication fork barrier in the ribosomal DNA of Saccharomyces cerevisiae using 2D-gel electrophoresis. Their origin, nature and magnitude, however, have remained elusive. We quantified these DSBs and show that a surprising 14% of replicating ribosomal DNA molecules are broken at the replication fork barrier in replicating wild-type cells. This translates into an estimated steady-state level of 7–10 DSBs per cell during S-phase. Importantly, breaks detectable in wild-type and sgs1 mutant cells differ from each other in terms of origin and repair. Breaks in wild-type, which were previously reported as DSBs, are likely an artefactual consequence of nicks nearby the rRFB. Sgs1 deficient cells, in which replication fork stability is compromised, reveal a class of DSBs that are detectable only in the presence of functional Dnl4. Under these conditions, Dnl4 also limits the formation of extrachromosomal ribosomal DNA circles. Consistently, dnl4 cells displayed altered fork structures at the replication fork barrier, leading us to propose an as yet unrecognized role for Dnl4 in the maintenance of ribosomal DNA stability.  相似文献   

7.
In order to determine the time required for nucleosomes assembled on the daughter strands of replication forks to assume favoured positions with respect to DNA sequence, psoralen cross-linked replication intermediates purified from preparative two-dimensional agarose gels were analysed by exonuclease digestion or primer extension. Analysis of sites of psoralen intercalation revealed that nucleosomes in the yeast Saccharomyces cerevisiae rDNA intergenic spacer are positioned shortly after passage of the replication machinery. Therefore, both the 'old' randomly segregated nucleosomes as well as the 'new' assembled histone octamers rapidly position themselves (within seconds) on the newly replicated DNA strands, suggesting that the positioning of nucleosomes is an initial step in the chromatin maturation process.  相似文献   

8.
The budding yeast, Saccharomyces cerevisiae, is an excellent model system for the study of DNA polymerases and their roles in DNA replication, repair, and recombination. Presently ten DNA polymerases have been purified and characterized from S. cerevisiae. Rapid advances in genome sequencing projects for yeast and other organisms have greatly facilitated and accelerated the identification of yeast enzymes and their homologues in other eukaryotic species. This article reviews current available research on yeast DNA polymerases and their functional roles in DNA metabolism. Relevant information about eukaryotic homologues of these enzymes will also be discussed.  相似文献   

9.
10.
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.  相似文献   

11.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   

12.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

13.
Werner syndrome is an autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several lines of evidence have suggested that the Werner syndrome protein WRN plays a role in DNA replication and S-phase progression. In order to define the exact role of WRN in genomic replication we examined cell cycle kinetics during normal cell division and after methyl-methane-sulfonate (MMS) DNA damage or hydroxyurea (HU)-mediated replication arrest following acute depletion of WRN from human fibroblasts. Loss of WRN markedly extended the time cells needed to complete the cell cycle after either of these genotoxic treatments. Moreover, replication track analysis of individual, stretched DNA fibers showed that WRN depletion significantly reduced the speed at which replication forks elongated in vivo after MMS or HU treatment. These results establish the importance of WRN during genomic replication and indicate that WRN acts to facilitate fork progression after DNA damage or replication arrest. The data provide a mechanistic basis for a better understanding of WRN-mediated maintenance of genomic stability and for predicting the outcomes of DNA-targeting chemotherapy in several adult cancers that silence WRN expression.  相似文献   

14.
Disruption of the nucleosomes at the replication fork.   总被引:16,自引:5,他引:11       下载免费PDF全文
C Gruss  J Wu  T Koller    J M Sogo 《The EMBO journal》1993,12(12):4533-4545
The fate of parental nucleosomes during chromatin replication was studied in vitro using in vitro assembled chromatin containing the whole SV40 genome as well as salt-treated and native SV40 minichromosomes. In vitro assembled minichromosomes were able to replicate efficiently in vitro, when the DNA was preincubated with T-antigen, a cytosolic S100 extract and three deoxynucleoside triphosphates prior to chromatin assembly, indicating that the origin has to be free of nucleosomes for replication initiation. The chromatin structure of the newly synthesized daughter strands in replicating molecules was analysed by psoralen cross-linking of the DNA and by micrococcal nuclease digestion. A 5- and 10-fold excess of protein-free competitor DNA present during minichromosome replication traps the segregating histones. In opposition to published data this suggests that the parental histones remain only loosely or not attached to the DNA in the region of the replication fork. Replication in the putative absence of free histones shows that a subnucleosomal particle is randomly assembled on the daughter strands. The data are compatible with the formation of a H3/H4 tetramer complex under these conditions, supporting the notion that under physiological conditions nucleosome core assembly on the newly synthesized daughter strands occurs by the binding of H2A/H2B dimers to a H3/H4 tetramer complex.  相似文献   

15.
Proteins from herpes simplex virus (HSV)-infected cells were used to reconstitute DNA synthesis in vitro on a preformed replication fork. The preformed replication fork consisted of a nicked, double-stranded, circular DNA molecule with a 5' single-strand tail that was noncomplementary to the template. The products of DNA synthesis on this substrate were rolling-circle molecules, as demonstrated by electron microscopy and alkaline agarose gel electrophoresis. The tails contained double-stranded regions, indicating that both leading- and lagging-strand DNA syntheses occurred. Rolling-circle DNA replication was dependent upon HSV DNA polymerase and ATP and was stimulated by a crude fraction containing ICP8 (HSV DNA-binding protein). Similar protein fractions from mock-infected cells were unable to support rolling-circle DNA replication. This in vitro DNA replication system should prove useful in the identification and characterization of the enzymatic activities required at the HSV replication fork.  相似文献   

16.
Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, whereas its partners in DNA repair (UvrA/B and MutL/S) are not. We conclude that UvrD participates in replication fork reversal in E. coli.  相似文献   

17.
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III‐mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.  相似文献   

18.
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV-crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40-infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell-cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.  相似文献   

19.
20.
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号