首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
FcγRIIB-deficient mice generated in 129 background (FcγRIIB(129)(-/-)) if back-crossed into C57BL/6 background exhibit a hyperactive phenotype and develop lethal lupus. Both in mice and humans, the Fcγr2b gene is located within a genomic interval on chromosome 1 associated with lupus susceptibility. In mice, the 129-derived haplotype of this interval, named Sle16, causes loss of self-tolerance in the context of the B6 genome, hampering the analysis of the specific contribution of FcγRIIB deficiency to the development of lupus in FcγRIIB(129)(-/-) mice. Moreover, in humans genetic linkage studies revealed contradictory results regarding the association of "loss of function" mutations in the Fcγr2b gene and susceptibility to systemic lupus erythematosis. In this study, we demonstrate that FcγRIIB(-/-) mice generated by gene targeting in B6-derived ES cells (FcγRIIB(B6)(-/-)), lacking the 129-derived flanking Sle16 region, exhibit a hyperactive phenotype but fail to develop lupus indicating that in FcγRIIB(129)(-/-) mice, not FcγRIIB deficiency but epistatic interactions between the C57BL/6 genome and the 129-derived Fcγr2b flanking region cause loss of tolerance. The contribution to the development of autoimmune disease by the resulting autoreactive B cells is amplified by the absence of FcγRIIB, culminating in lethal lupus. In the presence of the Yaa lupus-susceptibility locus, FcγRIIB(B6)(-/-) mice do develop lethal lupus, confirming that FcγRIIB deficiency only amplifies spontaneous autoimmunity determined by other loci.  相似文献   

2.
Peritoneal cavity B-1 cells are believed to produce IgM natural Abs. We have used alpha1,3-galactosyltransferase-deficient (GalT(-/-)) mice, which, like humans, produce IgM natural Abs against the carbohydrate epitope Galalpha1,3Gal (Gal), to demonstrate that peritoneal cavity B-1b cells with anti-Gal receptors produce anti-Gal IgM Abs only after LPS stimulation. Likewise, peritoneal cavity cells of GalT(-/-) and wild-type mice do not produce IgM Abs of other specificities without LPS stimulation. Development of Ab-secreting capacity is associated with loss of CD11b/CD18 (Mac-1) expression. In contrast, there are large numbers of cells producing anti-Gal and other IgM Abs in fresh splenocyte preparations from GalT(-/-) and (for non-Gal specificities) wild-type mice. These cells are Mac-1(-) but otherwise B-1b-like in their phenotype. We therefore hypothesized a pathway wherein peritoneal cavity B cells migrate into the spleen after activation in vivo and lose Mac-1 expression to become IgM Ab-producing cells. Consistent with this possibility, splenectomy reduced anti-Gal Ab production after immunization of GalT(-/-) mice with Gal-positive rabbit RBC. Furthermore, splenectomized B6 GalT(-/-), Ig micro -chain mutant ( micro (-/-)) (both Gal- and B cell-deficient) mice produced less anti-Gal IgM than nonsplenectomized controls after adoptive transfer of peritoneal cavity cells from B6 GalT(-/-) mice. When sorted GalT(-/-) Mac-1(+) peritoneal cavity B cells were adoptively transferred to B6 GalT(-/-), micro (-/-) mice, IgM Abs including anti-Gal appeared, and IgM-producing and Mac1(-) B cells were present in the spleen 5 wk after transfer. These findings demonstrate that peritoneal cavity Mac-1(+) B-1 cells are precursors of Mac-1(-) splenic IgM Ab-secreting cells.  相似文献   

3.
Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.NZBc4) exhibited a marked expansion of B1a and NKT cells in the surprising absence of autoimmunity. In this study, we sought to examine whether epistatic interactions between these two loci would affect lupus autoimmunity by generating bicongenic mice that carry both NZB chromosomal intervals. Compared with B6.NZBc1 mice, bicongenic mice demonstrated significantly decreased mortality, kidney disease, Th1-biased IgG autoantibody isotypes, and differentiation of IFN-γ-producing T cells. Furthermore, a subset of bicongenic mice exhibited a paucity of CD21(+)CD1d(+) B cells and an altered NKT cell activation profile that correlated with greater disease inhibition. Thus, NZBc4 contains suppressive epistatic modifiers that appear to inhibit the development of fatal NZBc1 autoimmunity by promoting a shift away from a proinflammatory cytokine profile, which in some mice may involve NKT cells.  相似文献   

4.
Mice expressing the X-linked immunodeficiency (xid) mutation lack functional Bruton's tyrosine kinase and were shown to be specifically deficient in peritoneal B-1 lymphocytes. We have previously shown that IL-9, a cytokine produced by TH2 lymphocytes, promotes B-1 cell expansion in vivo. To determine whether IL-9 overexpression might compensate the xid mutation for B-1 lymphocyte development, we crossed xid mice with IL-9-transgenic mice. In this model, IL-9 restored normal numbers of mature peritoneal B-1 cells that all belonged to the CD5(-) B-1b subset. Despite this normal B-1 lymphocyte number, IL-9 failed to restore classical functions of B-1 cells, namely, the production of natural IgM Abs, the T15 Id Ab response to phosphorylcholine immunization, and the antipolysaccharide humoral response against Streptococcus pneumoniae. By using bromelain-treated RBC, we showed that the antigenic repertoire of these IL-9-induced B-1b lymphocytes was different from the repertoire of classical CD5(+) B-1a cells, indicating that the lack of B-1 function by B-1b cells is associated with distinct Ag specificities. Taken together, our data show that B-1b cell development can restore the peritoneal B-1 population in xid mice but that these B-1b cells are functionally distinct from CD5(+) B-1a lymphocytes.  相似文献   

5.
Chronic graft-vs-host (cGVH) disease is induced in nonautoimmune mice by the transfer of alloreactive T cells that recognize foreign MHC class II. It closely resembles systemic lupus erythematosus, with antinuclear Abs and immune-mediated nephritis. Recent work has implicated TLRs, particularly TLR9, in the recognition of certain autoantigens in vitro and in vivo. To explore further the role of TLR9 in systemic autoimmunity, we induced cGVH disease in C57BL/6 (B6) mice lacking TLR9, including B6 mice expressing the anti-DNA-encoding IgH transgenes 3H9 or 56R (B6.3H9.TLR9(-/-), B6.56R.TLR9(-/-)). We found that cGVH disease caused breakdown of B cell tolerance to chromatin and DNA in TLR9(-/-) recipients of alloreactive cells, yet that nephritis was less severe and that some autoantibody titers were lower compared with B6-cGVH controls. Spleen lymphocyte analysis showed that cGVH disease strikingly depleted marginal zone B cells in B6 mice, but did not influence T cell subsets in either B6 or B6-TLR9(-/-) hosts. B6.56R.TLR9(-/-) mice had less spontaneous production of autoantibodies than B6.56R mice, but there were no significant differences between B6.56R and B6.56R.TLR9(-/-) postinduction of cGVH disease. Taken together, these results suggested that TLR9 may worsen some aspects of systemic autoimmunity while alleviating others.  相似文献   

6.
Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.  相似文献   

7.
Elicitation of contact sensitivity (CS), a classic example of T cell-mediated immunity, requires Ag-specific IgM Abs to trigger an initiation process. This early process leads to local recruitment of CS-effector T cells after secondary Ag challenge. These Abs are produced by the B-1 subset of B cells within 1 day after primary skin immunization. In this study we report the surprising observation that B-1 cells in the peritoneal cavity are activated as early as 1 h after naive mice are painted with a contact-sensitizing Ag on the skin of the trunk and feet to begin the initiation of CS. B-1 cells in the spleen and draining lymph nodes produce the initiating Abs by 1 day after immunization, when we found increased numbers of Ag-specific IgM Ab-producing cells in these tissues by ELISPOT assay. Importantly, we show that contact-activated peritoneal B-1 cells migrate to these lymphoid tissues and then differentiate into Ag-specific IgM Ab-producing cells, resulting in specific CS-initiating IgM Abs in the serum by 1 day. Furthermore, pertussis toxin, which is known to inhibit signaling via G protein-coupled chemokines, inhibited the migration of contact-activated peritoneal B-1 cells to the lymphoid tissues, probably due to BLR-1 (Burkitt lymphoma receptor-1). These findings indicate that within 1 h after contact skin immunization, B-1 cells in the peritoneal cavity are activated to migrate to the lymphoid tissues by chemokine-dependent mechanisms to produce serum Ag-specific IgM Abs within 1 day after immunization, leading to local recruitment of CS-effector T cells.  相似文献   

8.
B1 cells produce most natural Abs in unimmunized mice and play a key role in the response to thymus-independent Ags and microbial infection. Enlargement of B1 cell number in mice is often associated with autoimmunity. However, the factors that control peripheral B1 cell survival remain poorly characterized. Mice lacking the inhibitory receptor FcγRIIb exhibit a massive expansion in peritoneal B1 cells, implicating this receptor in B1 cell homeostasis. In this study, we show that peritoneal B1 cells express the highest levels of FcγRIIb among B cell subsets and are highly susceptible to FcγRIIb-mediated apoptosis. B1 cells upregulate FcγRIIb in response to innate signals, including CpG, and the B cell homeostatic cytokine BAFF efficiently protects activated B1 cells from FcγRIIb-mediated apoptosis via receptor downregulation. BAFF-transgenic mice manifest an expansion of peritoneal B1 cells that express lower levels of FcγRIIb and exhibit reduced susceptibility to apoptosis. Whereas both peritoneal B1 cells from wild-type and BAFF-transgenic mice immunized with CpG exhibit an increase in FcγRIIb levels, this change is blunted in BAFF-transgenic animals. Our combined results demonstrate that FcγRIIb controls peritoneal B1 cell survival and this program can be modulated by the BAFF signaling axis.  相似文献   

9.
Murine Aim2 and Ifi202 genes (encoding for the Aim2 and p202 proteins) are members of the IFN-inducible Ifi200 gene family. The Aim2 deficiency in mice activates IFN signaling and stimulates the expression of the lupus susceptibility gene, the Ifi202, located within the NZB autoimmunity 2 (Nba2) interval. Given that the deficiency in the expression of the Fcgr2b gene (encoding for the inhibitory FcγRIIB receptor) is associated with increased lupus susceptibility in mice, we investigated whether the Aim2 protein could regulate the expression of Fcgr2b gene. In this article, we report that Aim2 deficiency in mice suppresses the expression of the FcγRIIB receptor. Interestingly, the Fcgr2b-deficient cells expressed increased levels of the IFN-β, activated IFN signaling, and expressed reduced levels of the Aim2 protein. Treatment of splenic cells with IFN-α or -γ reduced levels of the FcγRIIB mRNA and protein and also decreased the activity of the FcγRIIB p(-729/+585) Luc reporter. Moreover, levels of the FcγRIIB receptor were significantly higher in the Stat1-deficient splenic cells than in the wild-type cells. Accordingly, increased expression of IFN-β in lupus-prone B6.Nba2-ABC mice, as compared with non-lupus-prone C57BL/6 (B6) or B6.Nba2-C mice, was associated with reduced expression of the FcγRIIB receptor. Notably, overexpression of the p202 protein in cells decreased the expression of the Aim2 gene, activated the IFN response, and suppressed the expression of the Fcgr2b gene. These observations demonstrate that the expression of Aim2 protein is required to maintain the expression of the Fcgr2b gene and also predict epistatic interactions between the Ifi200 genes and the Fcgr2b gene within the Nba2 interval.  相似文献   

10.
LPS stimulated B-1 cell polyclonal in vivo IgM responses depend on IL-4 release by invariant Valpha14+Jalpha18+ NKT (iNKT) cells. The IgM Abs can recruit effector T cells to mediate contact sensitivity. LPS activates the B-1 cell response just 1 day later, and depends on CD1d, iNKT cells, IL-4, TLR4, and MyD88. LPS in vivo and in vitro stimulates rapid preferential production of IL-4 in hepatic iNKT cells within 2 h. TLR4 were demonstrated in iNKT cells by flow cytometry and functional studies. Thus, innate microbial stimulation via TLR can activate iNKT cell and B-1 cell collaboration. The result is polyclonal IgM Ab responses capable of recruiting Ag-specific T cells into tissues. This may be involved in the promotion of autoimmunity by infectious agents.  相似文献   

11.
Vaccination of nonautoimmune prone mice with syngeneic dendritic cells (DC) readily induces anti-DNA autoantibodies but does not trigger systemic disease. We observed that anti-DNA autoantibody generation absolutely required alphabeta T cells and that gammadelta T cells also contributed to the response, but that regulatory T cells restrained autoantibody production. Although both NZB/W F(1) mice and DC vaccinated C57/BL6 mice produced autoantibodies against dsDNA, vaccinated mice had higher levels of Abs against H1 histone and lower levels of antinucleosome Abs than NZB/W F(1) mice. Despite a 100-fold increase in IL-12 and Th1 skewing to a foreign Ag, OVA, synergistic TLR activation of DC in vitro failed to augment anti-DNA Abs or promote class switching beyond that induced by LPS alone. TLR stimulation was not absolutely required for the initial loss of B cell tolerance because anti-DNA levels were similar when wild-type (WT) or MyD88-deficient DC were used for vaccination or WT and MyD88-deficient recipients were vaccinated with WT DC. In contrast, systemic administration of LPS, augmented anti-DNA Ab levels and promoted class switching, and this response was dependent on donor DC signaling via MyD88. LPS also augmented responses in the MyD88-deficient recipients, suggesting that LPS likely exerts its effects on both transferred DC and host B cells in vivo. These results indicate that both the alphabeta and gammadelta subsets are necessary for promoting autoantibody production by DC vaccination, and that although TLR/MyD88 signaling is not absolutely required for initiation, this pathway does promote augmentation, and Th1-mediated skewing, of anti-DNA autoantibodies.  相似文献   

12.
CD40 ligand (CD40L) is ectopically expressed on B cells in patients with systemic lupus erythematosus (SLE) and lupus-prone BXSB mice. To assess the role of the ectopic CD40L expression in development of SLE, we have established transgenic mice expressing CD40L on B cells. Some of the 12- to 14-mo-old CD40L-transgenic mice spontaneously produced autoantibodies such as antinuclear Abs, anti-DNA Abs, and antihistone Abs. Moreover, approximately half of the transgenic mice developed glomerulonephritis with immune-complex deposition, whereas the kidneys of the normal littermates showed either no pathological findings or only mild histological changes. These results indicate that CD40L on B cells causes lupus-like disease in the presence of yet unknown environmental factors that by themselves do not induce the disease. Thus, ectopic CD40L expression on B cells may play a crucial role in development of SLE.  相似文献   

13.
In common laboratory mouse strains, which are derived from the crossing between three subspecies, peritoneal B cells are enriched in B-1a cells characterized by the CD5(+)Mac-1(+)B220(low)IgM(high)IgD(low)CD43(+)CD9(+) phenotype. Intriguingly in other vertebrates, CD5(+)Mac-1(+) cells have never been found in a specific anatomic site. To ascertain the peculiarity of the CD5(+) peritoneal B cells in laboratory mice, we analyzed the peritoneal B cell subsets in 9 inbred and 39 outbred wild-derived mouse strains belonging to 13 different species/subspecies. We found that most of these strains do not have the CD5(+) B-1a cell population. However, all of these strains including classical laboratory mouse strains, have variable proportions of a novel B cell population: Bw, which is characterized by a unique phenotype (CD5(-)Mac-1(+)B220(high)IgM(high)IgD(high)CD43(-)CD9(-)) and is not restricted to the peritoneal cavity. Bw cells are also distinct from both B-1 and B-2 cells from a functional point of view both by proliferative responses, cytokine secretion and Ab synthesis. Moreover, transfer experiments show that bone marrow and fetal liver cells from wild mice can give rise to Bw cells in alymphoid mice. The conservation of this B cell population, but not of the CD5(+) B-1a, during evolution of the genus Mus, its readiness to respond to TLR ligands and to produce high concentration of autoantibodies suggest that Bw cells play a key role in innate immunity.  相似文献   

14.
The role of DNA as the target for pathogenic lupus autoantibodies in systemic lupus erythematosus is equivocal and renal damage may be due to cross-reactivity of lupus Abs with glomerular components. We have previously shown that lupus autoantibodies bind to the laminin component of the extracellular matrix. In the present work, we have analyzed the fine specificity of the interaction of pathogenic murine lupus autoantibodies with this molecule and the effect of inhibiting their binding to laminin during the course of the disease. We have found that pathogenic murine lupus autoantibodies react with a 21-mer peptide located in the globular part of the alpha-chain of laminin. Immunization of young lupus-prone mice with this peptide accelerated renal disease. Analysis of transgenic, congenic, and RAG-1(-/-) mice confirmed the importance of this epitope in the pathogenesis of lupus renal disease. We have synthesized a panel of peptides that cross-react with the anti-laminin Abs and have found that the binding of lupus autoantibodies to the extracellular matrix could be inhibited in vitro by some of these competitive peptides. Treatment of MRL/lpr/lpr mice with these peptides prevented Ab deposition in the kidneys, ameliorated renal disease, and prolonged survival of the peptide-treated mice. We suggest that laminin components can serve as the target for lupus Abs. The interaction with these Ags can explain both the tissue distribution and the immunopathological findings in lupus. Moreover, inhibition of autoantibody binding to the extracellular matrix can lead to suppression of disease.  相似文献   

15.
Systemic lupus erythematosus is a complex autoimmune disease characterized by dysregulated interactions between autoreactive T and B lymphocytes and the development of anti-nuclear Abs. The recently described pleiotropic cytokine IL-21 has been shown to regulate B cell differentiation and function. IL-21 is produced by activated T lymphocytes and its interactions with IL-21R are required for isotype switching and differentiation of B cells into Ab-secreting cells. In this report, we studied the impact of blocking IL-21 on disease in the lupus-prone MRL-Fas(lpr) mouse model. Mice treated for 10 wk with IL-21R.Fc fusion protein had reduced proteinuria, fewer IgG glomerular deposits, no glomerular basement membrane thickening, reduced levels of circulating dsDNA autoantibodies and total sera IgG1 and IgG2a, and reduced skin lesions and lymphadenopathy, compared with control mice. Also, treatment with IL-21R.Fc resulted in a reduced number of splenic T lymphocytes and altered splenic B lymphocyte ex vivo function. Our data show for the first time that IL-21 has a pathogenic role in the MRL-Fas(lpr) lupus model by impacting B cell function and regulating the production of pathogenic autoantibodies. From a clinical standpoint, these results suggest that blocking IL-21 in systemic lupus erythematosus patients may represent a promising novel therapeutic approach.  相似文献   

16.
Deficiency of complement in humans and mice is associated with the development of lupus and with abnormal repair of inflammatory and immune complex-mediated tissue injury. Here we ask whether similar defects in the resolution of inflammation are found in mice prone to spontaneous lupus. We compared the response to an i.p. injection of thioglycolate between two lupus-prone strains (MRL/Mp and NZB/W) and two non lupus-prone strains of mice (C57BL/6 and BALB/c). In all four strains the influx of polymorphonuclear neutrophils (PMN) was similar. However, by 96 h clearance of PMN in the control strains was complete, whereas in the autoimmune-prone strains PMN were still detectable. The number of mononuclear cells recruited was markedly reduced in the lupus-prone strains compared with the controls, and their phenotype was different. The lupus-prone strains had significantly fewer elicited macrophages that were CD11b-high and Ly6C-negative. In lupus-prone mice at 24 h there was a significantly increased number of apoptotic PMN free in the peritoneum, accompanied by a reduced percentage of macrophages containing apoptotic bodies, suggesting a defect in their uptake. An impaired ability of resident peritoneal macrophages from lupus-prone mice to engulf apoptotic cells was demonstrated by in vivo and in vitro cell clearance assays. These observations indicate that lupus-prone strains have an abnormal inflammatory response to thioglycolate and an intrinsic impairment in apoptotic cell uptake. These findings have implications for the initiation of autoimmunity, as lupus autoantigens are expressed on dying cells, and impaired disposal of these could enhance the development of autoimmunity.  相似文献   

17.
B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.  相似文献   

18.
Human natural Abs against Galalpha1-3Galbeta1-4GlcNAc (Gal) epitopes are a major barrier to xenotransplantation. Studies in this report, which use combined multiparameter flow cytometric sorting and enzyme-linked immunospot assay, demonstrate that anti-Gal IgM-producing cells are found exclusively in a small B cell subpopulation (i.e., CD21(-/low) IgM(high) B220(low) CD5(-) Mac-1(-) 493(-) cells) in the spleens of alpha1, 3-galactosyltransferase-deficient mice. All IgM-producing cells were detected in a similar splenic subpopulation of alpha1, 3-galactosyltransferase-deficient and wild-type mice. A higher frequency of B cells with anti-Gal surface IgM receptors was observed in the peritoneal cavity than in the spleen, but these did not actively secrete Abs, and showed phenotypic properties of B-1b cells (CD21(-/low) IgM(high) CD5(-) CD43(+) Mac-1(+)). However, these became Mac-1(-) and developed anti-Gal Ab-producing activity after in vitro culture with LPS. The splenic B cells with anti-Gal receptors consisted of both Mac-1(+) B-1b cells and Mac-1(-) B-1b-like cells. The latter comprised most anti-Gal IgM-producing cells. Our studies indicate that anti-Gal natural IgM Abs are produced by a B1b-like, Mac-1(-) splenic B cell population and not by plasma cells or B-1a cells. They are consistent with a model whereby B-1b cells lose Mac-1 expression upon Ag exposure and that these, rather than plasma cells, become the major IgM Ab-producing cell population.  相似文献   

19.
Circulating autoantibodies against dsDNA and chromatin are a characteristic of systemic lupus erythematosus in humans and many mouse models of this disease. B cells expressing these autoantibodies are normally regulated in nonautoimmune-prone mice but are induced to secrete Abs following T cell help. Likewise, anti-chromatin autoantibody production is T cell-dependent in Fas/Fas ligand (FasL)-deficient (lpr/lpr or gld/gld) mice. In this study, we demonstrate that Th2 cells promote anti-chromatin B cell survival and autoantibody production in vivo. FasL influences the ability of Th2 cells to help B cells, as Th2-gld/gld cells support higher titers of anti-chromatin Abs than their FasL-sufficient counterparts and promote anti-chromatin B cell participation in germinal centers. Th1 cells induce anti-chromatin B cell germinal centers regardless of FasL status; however, their ability to stimulate anti-chromatin Ab production positively correlates with their level of IFN-gamma production. This distinction is lost if FasL-deficient T cells are used: Th1-gld/gld cells promote significant titers of anti-chromatin Abs regardless of IFN-gamma production levels. Thus, FasL from effector T cells plays an important role in determining the fate of anti-chromatin B cells.  相似文献   

20.
lyn, a member of the src kinase family, is an important signaling molecule in B cells. lyn(-/-) mice display hyperactive B-1 cells and IgM hyperglobulinemia. The role of lyn on T cell function and development of Th1-mediated inflammatory disease is not known. Therefore, we examined the effect of disruption of the lyn gene on the development of experimental allergic encephalomyelitis (EAE), a well-established Th1-mediated autoimmune disease. Following immunization with myelin oligodendrocyte protein (MOG) p35-55, lyn(-/-) mice had higher clinical and pathological severity scores of EAE when compared with wild type (WT). The increase in the severity of EAE in lyn(-/-) mice was not associated with a commensurate increase in the production of proinflammatory cytokines in the CNS. lyn(-/-) mice with EAE showed elevation in serum anti-IgM MOG Ab levels over that seen in WT mice, along with a modest increase in the mRNA levels of complement C5 and its receptor, C5aR, in the spinal cord. Transfer of serum from MOG-immunized lyn(-/-) mice worsened EAE in WT mice, suggesting a pathogenic role for anti-MOG IgM Abs in EAE. These observations underscore the potential role of lyn in regulation of Th1-mediated disease and the role of autoantibodies and complement in the development of EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号