首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We have refined the initial docking model of the Mg(II)-co-ordinated chromomycin-d(A2G2C2T2) complex (2 drug equivalents per duplex) by a complete relaxation matrix analysis simulation of the two-dimensional nuclear Overhauser effect (NOESY) spectrum of the complex in 2H2O solution. This relaxation matrix refined structure of the complex exhibits the following characteristics. (1) We observe an unwound and elongated duplex that exhibits characteristics distinct from the A and B-DNA family of helices at the central (G-G-C-C).(G-G-C-C) chromomycin dimer binding and flanking sites. On the other hand sugar puckers, glycosidic torsion angles, displacement of the base-pairs from the helix axis and the minor groove width for this central tetranucleotide segment all fall within the A-family of helical parameters. (2) The chromomycin monomers are aligned in a head-to-tail orientation in the Mg(II)-co-ordinated dimer in the complex. The chromophores are aligned with a slight tilt relative to each other and make an angle of 75 degrees between their planes. The C-D-E trisaccharide segments from individual monomers adopt an extended conformation that projects in opposite directions in the dimer. The divalent metal cation is co-ordinated to the O(1) carbonyl and O(9) enolate atoms of the chromophores and aligns them such that the O(9)-Mg-O(9) angle is 170 degrees while all other O-Mg-O angles are in the 95(+/- 15)degrees range. (3) The sequence specificity of the chromomycin dimer for the widened and shallower (G3-G4-C5-C6).(G3-G4-C5-C6) minor groove binding site is associated with intermolecular hydrogen bonds formed between the OH group at C(8) of the chromophore and the minor groove NH2 group at position 2 and N(3) groups of G4 and between the O(1) oxygen of the E-sugar and the minor groove NH2 group at position 2 of G3 in the complex. (4) Additional intermolecular interactions are primarily van der Waals contacts between anomeric and adjacent CH2 protons on each sugar in the C-D-E trisaccharide segments of the chromomycin dimer and the minor groove surface of the DNA. These results provide insights into the induced conformational transitions required to generate a complementary match between the drug dimer and its DNA binding site on complex formation.  相似文献   

10.
Solution structure of the chromomycin-DNA complex   总被引:8,自引:0,他引:8  
X L Gao  D J Patel 《Biochemistry》1989,28(2):751-762
The structure of the chromomycin-DNA complex at the deoxyoctanucleotide duplex level has been determined from one- and two-dimensional proton NMR studies in Mg-containing aqueous solution. The NMR results demonstrate that the antitumor agent binds as a symmetrical dimer to the self-complementary d[T-T-G-G-C-C-A-A] duplex with retention of the 2-fold symmetry in the complex. A set of intermolecular nuclear Overhauser enhancements (NOEs) establishes that two chromomycin molecules in the dimer share the minor groove at the G-G-C-C.G-G-C-C segment in such a way that each hydrophilic edge of the chromophore is located next to the G-G.C-C half-site and each C-D-E trisaccharide chain extends toward the 3'-direction of the octanucleotide duplex. In addition, the A-B disaccharide segment and the hydrophilic side chain of the antitumor agent are directed toward the phosphate backbone. The observed changes in nucleic acid NOEs and coupling patterns on complex formation establish a transition to a wider and shallower minor groove at the central G-G-C-C.G-G-C-C segment required for accommodating the chromomycin dimer. The present demonstration that chromomycin binds as a dimer and switches the conformation of the DNA at its G.C-rich minor groove binding site provides new insights into antitumor agent design and the sequence specificity of antitumor agent-DNA recognition.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号