首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.  相似文献   

4.
5.
The suprachiasmatic nucleus (SCN) contains a biological clock that generates timing signals that drive daily rhythms in behaviors and homeostatic functions. In addition to this pacemaker function, the SCN gates its own sensitivity to incoming signals, which permits appropriate temporal adjustment to achieve synchrony with environmental and organismic states. A series of time-domains, in which the SCN restricts its own sensitivity to a limited set of stimuli that adjust clock phase, can be distinguished. Pituitary adenylyl cyclase-activating peptide (PACAP) and cAMP directly reset clock phase during the daytime domain; both cause phase advances only during the clock's day-time domain, but are without effect at night. In contrast, acetylcholine and cGMP analogs phase advance the clock only when applied during the night. Sensitivity to light and glutamate arises concomitant with sensitivity to acetylcholine and cGMP. Light and glutamate cause phase delays in the early night, by elevating intracellular Ca(2+) via neuronal ryanodine receptors. In late night, light and glutamate utilize a cGMP-mediated mechanism to induce phase advances. Nocturnal responses of SCN primed by light or glutamate can be modulated by effectors of phase-resetting in daytime, namely, PACAP and cAMP. Finally, the dusk and dawn domains are characterized by sensitivity to the pineal hormone, melatonin, acting through protein kinase C. These changing patterns of sensitivities demonstrate that the circadian clock controls multiple intracellular gates, which ensures that they can be opened selectively only at specific points in the circadian cycle. Discerning the molecular bases of these changes is fundamental to understanding integrative and regulatory mechanisms in the circadian system.  相似文献   

6.
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.  相似文献   

7.
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.  相似文献   

8.
9.
Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light-dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks.  相似文献   

10.
11.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light-dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod.  相似文献   

12.
13.
14.
The phase of the mammalian circadian pacemaker located in the suprachiasmatic nuclei (SCN) is controlled by a multitude of stimuli. While phase control is undoubtedly dominated by photic input, the serotonergic input from the raphe nuclei also influences SCN clock phase. In this article I review the evidence for serotonergic modulation of the SCN pacemaker, and the cellular mechanisms underlying these effects, obtained from in vitro experiments performed during the past decade. Serotonin can advance the SCN pacemaker when applied during the subjective day, and delay the pacemaker when applied during the subjective night. The daytime advances appear due to stimulation of 5HT7 receptors, activation of adenylate cyclase and protein kinase A, and opening of K+ channels. The synthesis of new proteins may also be critical for these phase shifts. Serotonergic phase advances can be inhibited by a variety of other modulatory inputs to the SCN, including neuropeptide Y, melatonin, and glutamate. Together, these data demonstrate that SCN circadian pacemaker phase is controlled by a complex interplay between multiple afferent stimuli, and that serotonin plays a critical role in this process.  相似文献   

15.
哺乳动物中的昼夜节律系统由位于下丘脑SCN核内的生物钟主钟和位于多数外周细胞中的子钟组成。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成,并接受外界因素的影响与环境周期保持同步。为此,就生物钟的调控机制而言,除了转录水平的基因表达调控外,生物钟转录产物和蛋白质的修饰也可以显著影响生物钟基因的表达时相。讨论了一些转录后与翻译后的修饰作用及其对生物钟的影响,并对其今后的研究方向作了展望。  相似文献   

16.
Light is the dominant environmental cue for entrainment of circadian rhythms. In mammals, light entrains rhythms by resetting the phase of a circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Until recently, the mechanism responsible for pacemaker resetting by light was thought to be exclusively sensitive to photic cues. New experiments indicate, however, that this mechanism is more plastic than once thought; is amenable to conditioned stimulus control; and is capable of acquiring, through conditioning, new response capabilities. These experiments showed that, in rats, a neutral stimulus paired with light in Pavlovian conditioning trials is capable of eliciting cellular and behavioral effects characteristic of circadian clock phase resetting by light, expression of Fos protein in the ventrolateral region of the SCN, and phase shifts of free-running rhythms. These novel results open up a previously unappreciated perspective on photic phase resetting and entrainment of circadian rhythms. Specifically, they suggest that the process normally initiated by light to reset the clock can be modified by learning and events in the environment that reliably precede the onset of light can assume the resetting function of light.  相似文献   

17.
18.
19.
The phase of the mammalian circadian pacemaker located in the suprachiasmatic nuclei (SCN) is controlled by a multitude of stimuli. While phase control is undoubtedly dominated by photic input, the serotonergic input from the raphe nuclei also influences SCN clock phase. In this article I review the evidence for serotonergic modulation of the SCN pacemaker, and the cellular mechanisms underlying these effects, obtained from in vitro experiments performed during the past decade. Serotonin can advance the SCN pacemaker when applied during the subjective day, and delay the pacemaker when applied during the subjective night. The daytime advances appear due to stimulation of 5HT7 receptors, activation of adenylate cyclase and protein kinase A, and opening of K+ channels. The synthesis of new proteins may also be critical for these phase shifts. Serotonergic phase advances can be inhibited by a variety of other modulatory inputs to the SCN, including neuropeptide Y, melatonin, and glutamate. Together, these data demonstrate that SCN circadian pacemaker phase is controlled by a complex interplay between multiple afferent stimuli, and that serotonin plays a critical role in this process.  相似文献   

20.
Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24‐h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号