首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between factor Va and membrane phosphatidylserine (PS) regulate activity of the prothrombinase complex. Two solvent-exposed hydrophobic residues located in the C2 domain, Trp(2063) and Trp(2064), have been proposed to contribute to factor Va membrane interactions by insertion into the hydrophobic membrane bilayer. However, the prothrombinase activity of rHFVa W(2063, 2064)A was found to be significantly impaired only at low concentrations of PS (5 mol %). In this study, we find that 10-fold higher concentrations of mutant factor Va are required for half-maximal prothrombinase activity on membranes containing 25% PS. The ability of the mutant factor Va to interact with factor Xa on a membrane was also impaired since 4-fold higher concentrations of factor Xa were required for half-maximal prothrombinase activity. The interaction of factor Va with 25% PS membranes was also characterized using fluorescence energy transfer and surface plasmon resonance. We found that the affinity of mutant factor Va for membranes containing 25% PS was reduced at least 400-fold with a K(d) > 10(-7) M. The binding of mutant factor Va to 25% PS membranes was markedly enhanced in the presence of factor Xa, indicating stabilization of the factor Va-factor Xa-membrane complex. Our findings indicate that Trp(2063) and Trp(2064) play a critical role in the high-affinity binding of factor Va to PS membranes. It remains to be determined whether occupancy of this PS binding site in factor Va is also required for high-affinity binding to factor Xa.  相似文献   

2.
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.  相似文献   

3.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   

4.
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ~55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ~5,000- and ~80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ~85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.  相似文献   

5.
The effect of membrane composition on the hemostatic balance   总被引:6,自引:0,他引:6  
Smirnov MD  Ford DA  Esmon CT  Esmon NL 《Biochemistry》1999,38(12):3591-3598
The phospholipid composition requirements for optimal prothrombin activation and factor Va inactivation by activated protein C (APC) anticoagulant were examined. Vesicles composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) supported factor Va inactivation relatively well. However, optimal factor Va inactivation still required relatively high concentrations of phosphatidylserine (PS). In addition, at a fixed concentration of phospholipid, PS, and APC, vesicles devoid of PE never attained a rate of factor Va inactivation achievable with vesicles containing PE. Polyunsaturation of any vesicle component also contributed significantly to APC inactivation of factor Va. Thus, PE makes an important contribution to factor Va inactivation that cannot be mimicked by PS. In the absence of polyunsaturation in the other membrane constituents, this contribution was dependent upon the presence of both the PE headgroup per se and unsaturation of the 1,2 fatty acids. Although PE did not affect prothrombin activation rates at optimal PS concentrations, PE reduced the requirement for PS approximately 10-fold. The Km(app) for prothrombin and the Kd(app) for factor Xa-factor Va decreased as a function of increasing PS concentration, reaching optimal values at 10-15% PS in the absence of PE but only 1% PS in the presence of PE. Fatty acid polyunsaturation had minimal effects. A lupus anticoagulant immunoglobulin was more inhibitory to both prothrombinase and factor Va inactivation in the presence of PE. The degree of inhibition of APC was significantly greater and much more dependent on the phospholipid composition than that of prothrombinase. Thus, subtle changes in the phospholipid composition of cells may control procoagulant and anticoagulant reactions differentially under both normal and pathological conditions.  相似文献   

6.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

7.
Rezaie AR  He X 《Biochemistry》2000,39(7):1817-1825
The nature of residue 225 on a consensus loop in serine proteases determines whether a protease can bind Na(+). Serine proteases with a Pro at this position are unable to bind Na(+), but those with a Tyr or Phe can bind Na(+). Factor Xa (FXa), the serine protease of the prothrombinase complex, contains a Tyr at this position. Na(+) is also known to stimulate the amidolytic activity of FXa toward cleavage of small synthetic substrates, but the role of Na(+) in the prothrombinase complex has not been investigated. In this study, we engineered a Gla-domainless form of FX (GDFX) in which residue Tyr(225) was replaced with a Pro. We found that Na(+) stimulated the cleavage rate of chromogenic substrates by FXa or GDFXa approximately 8-24-fold with apparent dissociation constants [K(d(app))] of 37 and 182 mM in the presence and absence of Ca(2+), respectively. In contrast, Na(+) minimally affected the cleavage rate of these substrates by the mutant, and no K(d(app)) for Na(+) binding to the mutant could be estimated. Unlike the wild-type enzyme, the reactivity of the mutant with antithrombin was independent of Na(+) and impaired approximately 32-fold. Ca(2+) improved the reactivity of the mutant with antithrombin approximately 5-fold. Affinity of the mutant for binding to factor Va was weakened and its ability to activate prothrombin was severely impaired. Further studies with the wild-type prothrombinase complex revealed that FXa binds to factor Va with a similar K(d(app)) of 1. 1-1.8 nM in the presence of Na(+), K(+), Li(+), Ch(+), and Tris(+) and that the catalytic efficiency of prothrombinase is enhanced less than 1.5-fold by the specific effect of Na(+) in the reaction buffer. These results suggest that (1) the loop including residue 225 (225-loop) is a Na(+) binding site in FXa, (2) the Na(+)- and Ca(2+)-binding loops of FXa are allosterically linked, and (3) the Tyr conformer of the 225-loop is critical for factor Xa function; however, both Na(+)-bound and Na(+)-free forms of factor Xa in the prothrombinase complex can efficiently activate prothrombin.  相似文献   

8.
The role of the Gla domain of human prothrombin in interaction with the prothrombinase complex was studied using a peptide with the sequence of the first 46 residues of human prothrombin, PT-(1-46). Intrinsic fluorescence measurements showed that PT-(1-46) undergoes a conformational alteration upon binding calcium; this conclusion is supported by one-dimensional (1)H NMR spectroscopy, which identifies a change in the chemical environment of tryptophan 41. PT-(1-46) binds phospholipid membranes in a calcium-dependent manner with a K(d) of 0.5 microm and inhibits thrombin generation by the prothrombinase complex with a K(i) of 0.8 microm. In the absence of phospholipid membranes, PT-(1-46) inhibits thrombin generation by factor Xa in the presence but not absence of factor Va, suggesting that PT-(1-46) inhibits prothrombin-factor Va binding. The addition of factor Va to PT-(1-46) labeled with the fluorophore sulfosuccinimidyl-7-amino-4-methylcoumarin-3-acetic acid (PT-(1-46)AMCA) caused a concentration-dependent quenching of AMCA fluorescence, providing direct evidence of a PT-(1-46)-factor Va interaction. The K(d) for this interaction was 1.3 microm. These results indicate that the N-terminal Gla domain of human prothrombin is a functional unit that has a binding site for factor Va. The prothrombin Gla domain is important for interaction of the substrate with the prothrombinase complex.  相似文献   

9.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

10.
Falls LA  Furie B  Furie BC 《Biochemistry》2000,39(43):13216-13222
Phospholipid membranes play a significant role during the proteolytic activation of blood coagulation proteins. This investigation identifies a role for phosphatidylethanolamine (PE) during the activation of factor X by the tenase complex, an enzymatic complex composed of the serine protease, factor IXa, a protein cofactor, factor VIIIa, a phospholipid membrane, and Ca(2+). Phospholipid vesicles composed of PE, phosphatidylserine (PS), and phosphatidylcholine support factor Xa generation. The K(m) and k(cat) for factor X activation by the tenase complex are independent of PE in the presence of 20% PS. At lower PS concentrations, the presence of 20 or 35% PE lowers the K(m) and increases the k(cat) as compared to those in vesicles without PE. The effect of PE on the k(cat) of the tenase complex is mediated through factor VIIIa. PE also enhances factor Xa generation by facilitating tenase complex formation; PE lowers the K(d(app)) of factor IXa for both phospholipid/Ca(2+) and phospholipid/Ca(2+)/factor VIIIa complexes in the presence of suboptimal PS. In addition, the K(d)s of factor IXa and factor X were lower for phospholipid vesicles containing PE. N-Methyl-PE increased the k(cat) and decreased the K(d(app)), whereas N,N-dimethyl-PE had no effect on either parameter, indicating the importance of headgroup size. Lyso-PE had no effect on kinetic parameters, indicating the sn-2 acyl chain dependence of the PE effect. Together, these results demonstrate a role for PE in the assembly and activity of the tenase complex and further extend the understanding of the importance of PE-containing membranes in hemostasis.  相似文献   

11.
Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150–160 μM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70–80 μM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50–100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.  相似文献   

12.
Factor Xa catalyzed prothrombin activation is strongly stimulated by the presence of negatively charged membranes plus calcium ions. Here we report experiments in which we determined the prothrombin-converting activity of phosphatidylcholine (PC) membranes that contain varying amounts of different anionic lipids, viz., phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylmethanol (MePA), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-beta-lactate (PLac), sulfatides (SF), sodium dodecyl sulfate (SDS), and oleic acid. All anionic lipids tested were able to accelerate factor Xa catalyzed prothrombin activation, in both the absence and presence of the protein cofactor Va. This shows that the prothrombin-converting activity of negatively charged membranes is not strictly dependent on the presence of a phosphate group but that lipids which contain a carboxyl or sulfate moiety are also able to promote the formation of a functionally active prothrombinase complex. In the absence of factor Va, the prothrombin-converting activity of membranes with MePA, PG, PE, PLac, SF, or SDS was strongly inhibited at high ionic strength, while the activity of PS- and PA-containing membranes was hardly affected by ionic strength variation. This suggests that in the case of the ionic strength sensitive lipids electrostatic forces play an important role in the formation of the membrane-bound prothrombinase complex. For PS and to a lesser extent for PA we propose that the formation of a coordinated complex (chelate complex) with Ca2+ as central ion and ligands provided by the gamma-carboxyglutamic acid residues of prothrombin and factor Xa and the polar head group of phospholipids is the major driving force in protein-membrane association. Our data indicate that the anionic lipids used in this study can be useful tools for further investigation of the molecular interactions that play a role in the assembly of a membrane-bound prothrombinase complex. Membranes that were solely composed of PC can also considerably enhance prothrombin activation in the presence of factor Va. This activity of PC is only observed on membranes which are composed of PC that contains unsaturated hydrocarbon side chains. Membranes prepared from phosphocholine-containing lipids with saturated hydrocarbon side chains such as dimyristoyl-PC, dipalmitoyl-PC, distearoyl-PC, and dioctadecylglycerophosphocholine hardly accelerated prothrombin activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lockett JM  Mast AE 《Biochemistry》2002,41(15):4989-4997
The functions of the first two Kunitz domains of tissue factor pathway inhibitor (TFPI) are well defined as active site-directed inhibitors of factor VIIa and factor Xa. The anticoagulant properties of the third Kunitz domain and C-terminal region were probed using altered forms of TFPI. TFPI-160 contains the first two Kunitz domains. K1K2C contains the first two Kunitz domains and the basic C-terminus. Neither TFPI-160 nor K1K2C contains the third Kunitz domain. In amidolytic assays containing calcium, TFPI-160 is a less potent inhibitor of factor Xa than TFPI. However, addition of the C-terminus in K1K2C nearly restores inhibitory activity to that of TFPI, indicating that the third Kunitz domain is not required for direct inhibition of factor Xa. When compared in assays containing phospholipids and factor Va, K1K2C and TFPI-160 are poor inhibitors compared to TFPI, demonstrating that the third Kunitz domain is required for the full anticoagulant activity of TFPI. TFPI was further characterized in amidolytic assays performed with Gla-domainless factor Xa and in prothrombin activation assays using submicellar concentrations of short-chain phospholipids (C6PS). TFPI and K1K2C are worse inhibitors of Gla-domainless factor Xa, compared to wild-type factor Xa, while TFPI-160 inhibits both forms of factor Xa equally, suggesting a C-terminus/Gla domain interaction. TFPI is a potent inhibitor of thrombin generation by prothrombinase assembled with C6PS, while TFPI-160 and K1K2C are not. Conversely, TFPI does not inhibit prothrombin activation by prothrombinase assembled on a two-dimensional lipid bilayer. Together, the data indicate that the region between Gly-160 and the end of the third Kunitz domain contributes to TFPI function by orienting the second Kunitz domain so that it can bind the active site of phospholipid-associated factor Xa prior to prothrombinase assembly and/or by slowing formation of the prothrombinase complex.  相似文献   

14.
Factor X(a) (FX(a)) binding to factor V(a) (FV(a)) on platelet-derived membranes containing surface-exposed phosphatidylserine (PS) forms the "prothrombinase complex" that is essential for efficient thrombin generation during blood coagulation. There are two naturally occurring isoforms of FV(a), FV(a1) and FV(a2). These two isoforms differ by a 3-kDa polysaccharide chain (at Asn(2181) in human FV(a1) (Kim, S. W., Ortel, T. L., Quinn-Allen, M. A., Yoo, L., Worfolk, L., Zhai, X., Lentz, B. R., and Kane, W. H. (1999) Biochemistry 38, 11448-11454)) and have different coagulant activities. We examined the interaction of the two bovine isoforms with active site-labeled FX(a), finding no significant difference. A soluble form of PS (C6PS) bound to FV(a1) and FV(a2) with comparable affinities (K(d) = 11-12 microm) and changes in FV(a) intrinsic fluorescence. At concentrations well below its critical micelle concentration, C6PS binding to bovine FV(a2) enhanced its affinity for FX(a) in solution by nearly 3 orders of magnitude (K(d)(eff) = 40-2 nm over a C6PS range of 30-400 microm) but had no effect on the affinity of FV(a1) for FX(a) (K(d) = 1 microm). This results in a soluble complex between FX(a) and FV(a2), whose expected molecular weight was confirmed by calibrated native gel electrophoresis. This complex behaved as a normal Michaelis-Menten enzyme in its ability to produce thrombin from meizothrombin (apparent k(cat)/K(m) congruent with 10(9) m(-1) s(-1)). The ability of soluble PS to trigger formation of a soluble prothrombinase complex suggests that exposure of PS molecules during platelet activation is likely the key event responsible for the assembly of an active membrane-bound complex.  相似文献   

15.
Phosphatidylserine (PS) plays a crucial role, in the conversion of prothrombin into thrombin by the protease, factor Xa. Physiologically, the conversion occurs in the prothrombinase complex. The question of how water-soluble proteins that normally circulate in plasma bind remains to be unambiguously determined. We previously found that the amphitropic proteins (prothrombin, factors V and Va) penetrate into phospholipid layers. AC polarography has allowed the detection for the first time of insertion of factor Xa into condensed monolayers containing phosphatidylserine (PS) and phosphatidylcholine (PC) either 100% PS or 25% PS in the presence of Ca2+. This observation demonstrates that part of factor Xa can cross the phospholipid polar headgroup/hydrocarbon chain interface. In parallel experiments, radioactive surface measurements permitted measuring binding of tritium-labeled factor Xa onto a PS monolayer and calculate an association constant, 6x10(6) M(-1). Penetration of factor Xa into PS-containing vesicles was investigated also using photoactivable 5-[125I]iodonaphthalene-1-azide, which binds selectively to the lipid embedded domains of the protein. These experiments suggest that Factor Xa penetrates preferentially by its heavy chain, an alternative mode of binding to the commonly accepted binding via its Gla domain. Interaction of factor Xa with PS vesicles also changes its apparent K(m) for S 2222.  相似文献   

16.
Kinetic studies support the concept that protein substrate recognition by the prothrombinase complex of coagulation is achieved by interactions at extended macromolecular recognition sites (exosites), distinct from the active site of factor Xa within the complex. We have used this formal kinetic model and a monoclonal antibody directed against Xa (alphaBFX-2b) to investigate the contributions of surfaces on the proteinase to exosite-mediated protein substrate recognition by prothrombinase. alphaBFX-2b bound reversibly to a fluorescent derivative of factor Xa (K(d) = 17.1 +/- 5.6 nm) but had no effect on active site function of factor Xa or factor Xa saturably assembled into prothrombinase. In contrast, alphaBFX-2b was a slow, tight binding inhibitor of the cleavage of either prethrombin 2 or meizothrombin des-fragment 1 by prothrombinase (K(i)(*) = 0.55 +/- 0.05 nm). Thus, alphaBFX-2b binding to factor Xa within prothrombinase selectively leads to the inhibition of protein substrate cleavage without interfering with active site function. Inhibition kinetics could adequately be accounted for by a kinetic model in which prethrombin 2 and alphaBFX-2b bind in a mutually exclusive way to prothrombinase. These are properties expected of an exosite-directed inhibitor. The site(s) on factor Xa responsible for antibody binding were evaluated by identification of immunoreactive fragments following chemical digestion of human and bovine Xa and were further confirmed with a series of recombinantly expressed fragments. These approaches suggest that residues 82-91 and 102-116 in the proteinase domain contribute to alphaBFX-2b binding. The data establish this antibody as a prototypic exosite-directed inhibitor of prothrombinase and suggest that the occlusion of a surface on factor Xa, spatially removed from the active site, is sufficient to block exosite-dependent recognition of the protein substrate by prothrombinase.  相似文献   

17.
Proteolytic alterations of factor Va bound to platelets   总被引:5,自引:0,他引:5  
The coagulation protein Factor Va forms the receptor for the serine protease Factor Xa at the platelet surface. This membrane-bound complex of Factor Va and Factor Xa plus calcium constitutes the enzymatic complex prothrombinase, which effects the conversion of prothrombin to the clotting enzyme, thrombin. Studies were undertaken to investigate the proteolytic events accompanying the inactivation of platelet-bound Factor Va by activated protein C as well as the ability of Factor Xa to protect Factor Va from activated protein C inactivation. During the course of these studies, observations were made which indicated that Factor Va was also cleaved by both a platelet-associated protease, as well as Factor Xa. When Factor Va was incubated with washed platelets, electrophoresis and autoradiography of solubilized platelet pellets indicated that three Factor Va peptides were associated with the platelet: component D (Mr = 94,000), component E (Mr = 74,000), and a 90,000-dalton peptide (component D') which appeared with time as the result of a platelet-associated protease cleavage of component D. The Factor Va peptides bound to platelets were proteolytically inactivated by activated protein C, resulting in five peptide products, all of which remained associated with the platelet-membrane surface. Factor Va was protected from activated protein C proteolysis by complex formation with Factor Xa or active site-blocked Factor Xa. However, active Factor Xa cleaved platelet-bound Factor Va to peptide products which also remained associated with the platelet. Whereas activated protein C rapidly cleaved components D and D' with secondary cleavages occurring in component E, Factor Xa rapidly cleaved component E with secondary cleavages occurring in components D and D'. The Factor Xa-cleaved Factor Va is catalytically functional. To determine whether cleavage was necessary for function, prothrombin conversion reaction mixtures were monitored for thrombin formation and Factor Va cleavage with time in a defined phospholipid vesicle model system. The results indicated that Factor Xa cleavage of Factor Va is not essential for Factor Va activity but may promote its ability to function in the prothrombinase complex.  相似文献   

18.
Barhoover MA  Orban T  Bukys MA  Kalafatis M 《Biochemistry》2008,47(48):12835-12843
The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334-335 and 695-698 as follows: factor V(3K) ((334)DY(335) --> KF and (695)DYDY(698) --> KFKF), factor V(KF/4A) ((334)DY(335) --> KF and (695)DYDY(698) --> AAAA), and factor V(6A) ((334)DY(335) --> AA and (695)DYDY(698) --> AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va(3K), factor Va(K4/4A), and factor Va(6A) had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor Va(Wt)) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va(3K) had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor Va(Wt), while prothrombinase assembled with saturating concentrations of factor Va(KF/4A) and factor Va(6A) had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334-335 together with amino acid region 695-698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa.  相似文献   

19.
The location of the active site of membrane-bound factor Xa relative to the phospholipid surface was determined both in the presence and absence of factor Va using fluorescence energy transfer. Factor Xa was reacted with 5-(dimethylamino)-1-naphthalenesulfonyl- glutamylglycylarginyl(DEGR) chloromethyl ketone to yield DEGR-Xa, an analogue of factor Xa with a fluorescent dye attached covalently to the active site. When DEGR-Xa was titrated with phosphatidylcholine/phosphatidylserine vesicles containing octadecylrhodamine, fluorescence energy transfer was observed between the donor dyes in the active sites of the membrane-bound enzymes and the acceptor dyes at the outer surface of the phospholipid bilayer. Based on the dependence of the efficiency of singlet-singlet energy transfer upon the acceptor density and assuming kappa 2 = 2/3, the distance of closest approach between the active site probe and the surface of the phospholipid bilayer averaged 61 A in the absence of factor Va and 69 A in the presence of factor Va. These direct measurements show that the active site of factor Xa is located far above the membrane surface. Also, association of factor Xa with factor Va on the membrane surface to form the prothrombinase complex results in a substantial movement of the active site of the enzyme relative to the membrane surface. The 5-(dimethylamino)-1-naphthalenesulfonyl emission in the complete prothrombinase complex was distinct from that in any other combination of components. It therefore appears that the optimum conformation of the prothrombinase active site is achieved only when factor Va, Ca2+, and a membrane surface interact simultaneously with factor Xa. Thus, in addition to its previously demonstrated ability to stimulate factor Xa binding to membranes, factor Va, upon association with factor Xa on a phospholipid surface, allosterically induces a particular active site conformation in factor Xa and also positions the active site at the correct distance above the membrane for prothrombin activation.  相似文献   

20.
Inhibition of prothrombinase complex by plasma proteinase inhibitors   总被引:3,自引:0,他引:3  
V Ellis  M F Scully  V V Kakkar 《Biochemistry》1984,23(24):5882-5887
The rate of inactivation of human coagulation factor Xa by the plasma proteinase inhibitors antithrombin III and alpha 1-antitrypsin has been studied in the presence of the accessory components which constitute the prothrombinase complex. The rate of inactivation of factor Xa by antithrombin III was found to be decreased in the presence of phospholipid vesicles with high affinity for factor Xa. The second-order rate constant for the reaction fell from 6.21 X 10(4) to 3.40 X 10(4) M-1 min-1 in the presence of 20 microM phospholipid. Purified factor Va had no effect on the rate of inactivation of factor Xa in the absence of phospholipid. In the presence of phospholipid, factor Va increased the protective effect displayed by phospholipid, further reducing the rate constant to 2.20 X 10(4) M-1 min-1. The rate of inactivation of factor Xa by alpha 1-antitrypsin was unaffected under these conditions. Platelet-bound prothrombinase complex was formed by incubation of factor Xa with washed human platelets activated by a mixture of collagen and thrombin. The prothrombinase activity was inhibited by antithrombin III was a second-order rate constant of 0.85 X 10(4) M-1 min-1. This rate was obtained in both the presence and absence of exogenous factor Va. Platelet factor 3 vesicles, isolated from platelet aggregation supernatants, also formed prothrombinase complex in the presence of factor Va, and this was inhibited by antithrombin III at the same rate as the platelet-bound complex. There was no protection of the platelet-bound prothrombinase complex from inhibition by alpha 1-antitrypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号