首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   

2.
Angiogenesis     
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.  相似文献   

3.
Endothelial cell spreading, migration, and morphogenesis are essential for angiogenesis, the formation of new blood vessels. In the present study, we explored roles of tyrosine kinase Pyk2 in angiogenesis of pulmonary endothelial cells. We found that tyrosine kinase Pyk2 was particularly enriched in pulmonary vascular endothelial cells and lung, a major organ site for tumor metastasis. By using adenovirus-mediated expression of various Pyk2 mutants, we demonstrated that Pyk2 tyrosine kinase activity was essential for the pulmonary vascular endothelial cell spreading, migration, morphogenesis, as well as pulmonary vein and artery angiogenesis ex vivo. We further showed that Pyk2 kinase activity was required for the expression of focal adhesion kinase, p130Crk-associated substrate, and its homologue human enhancer of filamentation 1, thus regulating formation of focal adhesions and cytoskeletal reorganization. These results indicate that Pyk2 plays a crucial role in the pulmonary endothelial cell motility such as spreading and migration necessary for angiogenesis.  相似文献   

4.
Endothelial-pericyte interactions in angiogenesis   总被引:29,自引:0,他引:29  
It takes two to make blood vessels—endothelial cells and pericytes. While the endothelial cells are the better characterized of the two, pericytes are now coming into focus as important regulators of angiogenesis and blood vessel function, and as potential drug targets. However, pericytes are still surrounded by much controversy. They are difficult to define, they constitute a heterogeneous population of cells, and their ontogeny is not well understood. They are plastic and have the capacity to differentiate into other mesenchymal cell types, such as smooth muscle cells, fibroblasts and osteoblasts. Recent interest in pericytes also stems from their potential involvement in diseases such as diabetic microangiopathy, tissue fibrosis, cancer, atherosclerosis and Alzheimer's disease. The present review focuses on the role of pericytes in physiological angiogenesis. The currently favored view states that the initial endothelial tubes form without pericyte contact, and that subsequent acquisition of pericyte coverage leads to vessel remodeling, maturation and stabilization. Improved means of identifying and visualizing pericytes now challenge this view and show that high numbers of pericytes invest in actively sprouting and remodeling vessels. Genetic data demonstrate the critical importance of pericytes for vascular morphogenesis and function, and imply specific roles for the cell type in various aspects of angiogenesis.The images were captured using a Leica confocal microscope, the purchase of which was made possible though a generous grant from the IngaBritt and Arne Lundberg's Research Foundation  相似文献   

5.
VEGF regulates cell behavior during vasculogenesis   总被引:13,自引:0,他引:13  
Prominent among molecules that control neovascular processes is vascular endothelial growth factor (VEGF). The VEGF ligands comprise a family of well-studied mitogens/permeability factors that bind cell surface receptor tyrosine kinases. Targets include VEGF receptor-1/Flt1 and VEGF receptor-2/Flk1. Mice lacking genes for VEGF ligand or VEGF receptor-2 die early in gestation, making it difficult to determine the precise nature of underlying endothelial cellular behavior(s). To examine the effect(s) of VEGF signaling on cell behavior in detail, we conducted loss-of-function studies using avian embryos. Injection of soluble VEGFR-1 results in malformed vascular networks and the absence of large vessels. In the most severe cases embryos exhibited vascular atresia. Closely associated with the altered phenotype was a clear endothelial cell response-a marked decrease in cell protrusive activity. Further, we demonstrate that VEGF gain of function strikingly increased cell protrusive activity. Together, our data show that VEGF/VEGF receptor signaling regulates endothelial cell protrusive activity, a key determinant of blood vessel morphogenesis. We propose that VEGF functions as an instructive molecule during de novo blood vessel morphogenesis.  相似文献   

6.
Blood vessel development and network patterning are controlled by several signaling molecules, including VEGF, FGF, TGF‐ß, and Ang‐1,2. Among these, the role of VEGF‐A signaling in vessel morphogenesis is best understood. The biological activity of VEGF‐A depends on its reaction with specific receptors Flt1 and Flk1. Roles of VEGF‐A signaling in endothelial cell proliferation, migration, survival, vascular permeability, and induction of tip cell filopodia have been reported. In this study, we have generated Flt1‐tdsRed BAC transgenic (Tg) mice to monitor Flt1 gene expression during vascular development. We show that tdsRed fluorescence is observed within blood vessels of adult mice and embryos, indicative of retinal angiogenesis and tumor angiogenesis. Flt1 expression recapitulated by Flt1‐tdsRed BAC Tg mice overlapped well with Flk1, while Flt1 was expressed more abundantly in endothelial cells of large blood vessels such as dorsal aorta and presumptive stalk cells in retina, providing a unique model to study blood vessel development. genesis 50:561–571, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
The formation of blood vessels within the vascular system entails a variety of cellular processes, including proliferation, migration and differentiation. In many cases, these diverse processes need to be finely coordinated among neighbouring endothelial cells in order to establish a functional vascular network. For instance, during angiogenic sprouting specialized endothelial tip cells follow guidance cues and migrate extensively into avascular tissues while trailing stalk cells must stay connected to the patent blood vessel. The vascular endothelial growth factor (VEGF) and Notch signalling pathways have emerged as the major players in governing these different cellular behaviours. In particular, recent work indicates an important role for Notch signalling in determining how an endothelial cell responds to VEGF. In this review, we provide an overview of these biochemically distinct pathways and discuss how they may interact during endothelial cell differentiation and angiogenesis.  相似文献   

9.
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.  相似文献   

10.
Vascular permeability factor: a unique regulator of blood vessel function.   总被引:29,自引:0,他引:29  
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a potent polypeptide regulator of blood vessel function. VPF promotes an array of responses in endothelium, including hyperpermeability, endothelial cell growth, angiogenesis, and enhanced glucose transport. VPF regulates the expression of tissue factor and the glucose transporter. All of the endothelial cell responses to VPF are evidently mediated by high affinity cell surface receptors. Thus, endothelial cells have a unique and specific spectrum of responses to VPF. Since each of the responses of endothelial cells to VPF are also elicited by agonists, such as bFGF, TNF, histamine and others, it remains a major challenge to determine how post-receptor signalling pathways maintain both specificity and redundancy in cellular responses to various agonists.  相似文献   

11.
During angiogenic sprouting, newly forming blood vessels need to connect to the existing vasculature in order to establish a functional circulatory loop. Previous studies have implicated genetic pathways, such as VEGF and Notch signaling, in controlling angiogenesis. We show here that both pathways similarly act during vascularization of the zebrafish central nervous system. In addition, we find that chemokine signaling specifically controls arterial-venous network formation in the brain. Zebrafish mutants for the chemokine receptor cxcr4a or its ligand cxcl12b establish a decreased number of arterial-venous connections, leading to the formation of an unperfused and interconnected blood vessel network. We further find that expression of cxcr4a in newly forming brain capillaries is negatively regulated by blood flow. Accordingly, unperfused vessels continue to express cxcr4a, whereas connection of these vessels to the arterial circulation leads to rapid downregulation of cxcr4a expression and loss of angiogenic characteristics in endothelial cells, such as filopodia formation. Together, our findings indicate that hemodynamics, in addition to genetic pathways, influence vascular morphogenesis by regulating the expression of a proangiogenic factor that is necessary for the correct pathfinding of sprouting brain capillaries.  相似文献   

12.
A Titin mutation defines roles for circulation in endothelial morphogenesis   总被引:2,自引:0,他引:2  
Morphogenesis of the developing vascular network requires coordinated regulation of an extensive array of endothelial cell behaviors. Precisely regulated signaling molecules such as vascular endothelial growth factor (VEGF) direct some of these endothelial behaviors. Newly forming blood vessels also become subjected to novel biomechanical forces upon initiation of cardiac contractions. We report here the identification of a recessive mouse mutation termed shrunken-head (shru) that disrupts function of the Titin gene. Titin was found to be required for the initiation of proper heart contractions as well as for maintaining the correct overall shape and orientation of individual cardiomyocytes. Cardiac dysfunction in shrunken-head mutant embryos provided an opportunity to study the effects of lack of blood circulation on the morphogenesis of endothelial cells. Without blood flow, differentiating endothelial cells display defects in their shapes and patterns of cell-cell contact. These endothelial cells, without exposure to blood circulation, have an abnormal distribution within vasculogenic vessels. Further effects of absent blood flow include abnormal spatial regulation of angiogenesis and elevated VEGF signaling. The shrunken-head mutation has provided an in vivo model to precisely define the roles of circulation on cellular and network aspects of vascular morphogenesis.  相似文献   

13.
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.  相似文献   

14.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

15.
Inhibition of angiogenesis by a mouse sprouty protein   总被引:7,自引:0,他引:7  
Sprouty negatively modulates branching morphogenesis in the Drosophila tracheal system. To address the role of mammalian Sprouty homologues in angiogenesis, another form of branching morphogenesis, a recombinant adenovirus engineered to express murine Sprouty-4 selectively in endothelial cells, was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Sprouty-4 expression inhibited branching and sprouting of small vessels, resulting in abnormal embryonic development. In vitro, Sprouty-4 inhibited fibroblast growth factor and vascular endothelial cell growth factor-mediated cell proliferation and migration and prevented basic fibroblast growth factor and vascular endothelial cell growth factor-induced MAPK phosphorylation in endothelial cells, indicating inhibition of tyrosine kinase-mediated signaling pathways. The ability of constitutively activated mutant Ras(L61) to rescue Sprouty-4 inhibition of MAPK phosphorylation suggests that Sprouty inhibits receptor tyrosine kinase signaling upstream of Ras. Thus, Sprouty may regulate angiogenesis in normal and disease processes by modulating signaling by endothelial tyrosine kinases.  相似文献   

16.
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.  相似文献   

17.
Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology. Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment. Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells. We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.  相似文献   

18.
血管内皮细胞发育及分子机制   总被引:1,自引:0,他引:1  
王旭  熊敬维 《遗传》2012,34(9):1114-1122
心血管系统是胚胎发育中最先形成的器官之一, 为机体提供营养成分和氧气。血管发育包括两部分, 一是内皮祖细胞(Angioblast)聚集形成血管原基(Vasculogenesis), 二是从已有血管形成新的血管分支(Angiogenesis)。此后由初级内皮细胞管召集平滑肌细胞形成功能性血管(Vessel maturation)。内皮祖细胞起源途径包括:由Flk1阳性中胚层细胞到成血成血管细胞(Hemangioblast)到血管内皮祖细胞; 或由Flk1阳性中胚层细胞直接到血管内皮祖细胞。Flk1阳性中胚层细胞受到vegf、flk1、cloche、lycat、etsrp等关键基因或信号通路的调节, 其中核心问题是原肠期中胚层如何形成Flk1阳性中胚层细胞及进一步分化成血管内皮祖细胞和成血血管细胞。文章集中评述内皮祖细胞发育、分化及其分子遗传调控机制, 并展望本领域未来发展方向。  相似文献   

19.
Hepatoma-derived growth factor (HDGF) was previously identified as a developmentally regulated cardiovascular and renal gene that is mitogenic for vascular smooth muscle and aortic endothelial cells. As reciprocal interactions of smooth muscle and endothelial cells are necessary for vascular formation, we examined whether HDGF plays a role in angiogenesis. According to immunohistochemistry, HDGF was highly expressed in endothelial cells of nonmuscularized, forming blood vessels of the fetal lung. HDGF was also expressed in endothelial cells of small (20 microm) mature arteries and veins. By Western immunoblotting, HDGF was highly expressed by human pulmonary microvascular endothelial cells in vitro. Adenoviral overexpression of HDGF was mitogenic for human pulmonary microvascular endothelial cells in serum-free medium, stimulating a 1.75-fold increase in bromodeoxyuridine (BrdU) uptake and a twofold increase in cell migration. With the chick chorioallantoic membrane (CAM), a biologic assay for angiogenesis, exogenous recombinant HDGF significantly stimulated blood vessel formation and a dose-dependent reorganization of cells within the CAM into a more compact, linear alignment reminiscent of tube formation. According to double immunostaining for endothelial cells with a transforming growth factor-betaII receptor antibody and BrdU as a marker of cell proliferation, exogenous HDGF selectively stimulated endothelial cell BrdU uptake. HDGF also activated specific ERK1/2 signaling and did not overlap with VEGF SAPK/JNK, Akt-mediated pathways. We conclude that HDGF is a highly expressed vascular endothelial cell protein in vivo and is a potent endothelial mitogen and regulator of endothelial cell migration by mechanisms distinct from VEGF.  相似文献   

20.

Background

Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics.

Methods and Findings

To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.

Conclusions

These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号