首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intercellular junctions have been investigated in epidermis and pharyngeal epithelium of larvae and adults of various species of tunicates with conventional and freeze-fracture techniques. Gap and tight junctions were found, similar to those observed in vertebrate tissues. Gap junctions were frequent in glandular epithelia and in larval tissues. They were interpreted as ways of intercellular communication in these developing tissues. They were also particularly numerous in Phallusia pharyngeal cells. Tight junctions were found preferentially in adult pharyngeal and epidermal epithelia, where they were arranged in strands of distinct particles forming a belt-like network at the apical part of cells. These junctions were interpreted as providing a tight barrier between the internal medium and the external environment. In larvae, tight junctions were found only between epidermal cells of the tail. These junctions thus characterized completely differentiated tissues, where they might play, in tunicates and in vertebrates, the same role as septate junctions do in invertebrates.  相似文献   

2.
The barrier function of skin: how to keep a tight lid on water loss   总被引:4,自引:0,他引:4  
Without an epidermis, we would be in a sorry state. The epidermal layer not only protects us from environmental pathogens but also acts as a 'barrier' to water loss. The identification of the molecular nature of the barrier has occupied the efforts of skin researchers over many years, with the consensus in the field being that a protein-lipid layer, located in the upper layers of the epidermis, is necessary for establishment and maintenance of a water barrier. Now, evidence has been presented that components of intercellular junctions, termed tight junctions, also play an essential role in development of barrier function in the skin. Remarkably, the data support a hypothesis that was presented more than 30 years ago.  相似文献   

3.
During differentiation, many cells reorganize their microtubule cytoskeleton into noncentrosomal arrays. Although these microtubules are likely organized to meet the physiological roles of their tissues, their functions in most cell types remain unexplored. In the epidermis, differentiation induces the reorganization of microtubules to cell–cell junctions in a desmosome-dependent manner. Here, we recapitulate the reorganization of microtubules in cultured epidermal cells. Using this reorganization assay, we show that cortical microtubules recruit myosin II to the cell cortex in order to engage adherens junctions, resulting in an increase in mechanical integrity of the cell sheets. Cortical microtubules and engaged adherens junctions, in turn, increase tight junction function. In vivo, disruption of microtubules or loss of myosin IIA and B resulted in loss of tight junction–mediated barrier activity. We propose that noncentrosomal microtubules act through myosin II recruitment to potentiate cell adhesion in the differentiating epidermis, thus forming a robust mechanical and chemical barrier against the external environment.  相似文献   

4.
Animals construct a layered skin to prevent dehydration and pathogen entrance. The barrier function of the skin relies on the extensive cross-linking of specialised components. In insects, for instance, epidermal cells produce an apical extracellular cuticle that consists of a network of proteins, chitin and lipids. We have identified mutations in the Drosophila gene coding for the δ-aminolevulinate synthase (Alas) that cause massive water loss. The cuticle of alas mutant larvae detaches from the epidermis and its basal region is frayed suggesting that an Alas dependent pathway is needed to organise the contact between the cuticle and the epidermis and anchor the cuticle to the apical surface of epidermal cells. Concomitantly, reduction of Alas function results in weakening of the extracellular dityrosines network in the cuticle, whereas glutamyl-lysine isopeptide bonds are not affected. The lateral septate junctions of epidermal cells that serve as a paracellular plug are intact, as well. Taken together, we hypothesise that Alas activity, which initiates heme biosynthesis in the mitochondrion, is needed for the formation of a dityrosine-based barrier that confers resistance to the internal hydrostatic pressure protecting both the cuticle from transcellular infiltration of body fluid and the animal from dehydration. We conclude that at least two modules--an apical protein-chitin lattice and the lateral septate junctions, act in parallel to ensure Drosophila skin impermeability.  相似文献   

5.
The plasmatic membranes, the intercellular junctions and the intercellular spaces of the epidermis of the fish Pimelodus maculatus were studied by freeze-fracture and by lanthanum methods. The observations has confirmed the presence of desmosomes. Gap junctions were not found and the tight junctions can be seen very rarely, arranged to form small discrete maculae. The finger-print pattern due to the microridges of the apical plasma membrane of the superficial cells was studied by direct replicas. The tracer penetrates all the intercellular epidermal spaces but failed to penetrate the dermis, suggesting the presence of a barrier at the dermo-epidermal level.  相似文献   

6.
Ceramides (Cers) accumulate within the interstices of the outermost epidermal layers, or stratum corneum (SC), where they represent critical components of the epidermal permeability barrier. Although the SC contains substantial sphingol, indicative of ceramidase (CDase) activity, which CDase isoforms are expressed in epidermis remains unresolved. We hypothesized here that CDase isoforms are expressed within specific epidermal compartments in relation to functions that localize to these layers. Keratinocytes/epidermis express all five known CDase isoforms, of which acidic and alkaline CDase activities increase significantly with differentiation, persisting into the SC. Conversely, neutral and phytoalkaline CDase activities predominate in proliferating keratinocytes. These differentiation-associated changes in isoform activity/protein are attributed to corresponding, differentiation-associated changes in mRNA levels (by quantitative RT-PCR). Although four of the five known CDase isoforms are widely expressed in cutaneous and extracutaneous tissues, alkaline CDase-1 occurs almost exclusively in epidermis. These results demonstrate large, differentiation-associated, and tissue-specific variations in the expression and activities of all five CDase isoforms. Because alkaline CDase-1 and acidic CDase are selectively upregulated in the differentiated epidermal compartment, they could regulate functions that localize to the distal epidermis, such as permeability barrier homeostasis and antimicrobial defense.  相似文献   

7.
Abstract

The skin forms a life-sustaining barrier between the organism and physical environment. The physical barrier of skin is mainly localized in the stratum corneum (SC); however, nucleated epidermis also contributes to the barrier through tight, gap, and adherens junctions (AJs), as well as through desmosomes and cytoskeletal elements. Many inflammatory diseases, such as atopic dermatitis (AD) and psoriasis, are associated with barrier dysfunction. It is becoming increasingly clear that the skin barrier function is not only affected by inflammatory signals but that defects in structural components of the barrier may be the initiating event for inflammatory diseases. This view is supported by findings that mutations in filaggrin, a key structural epidermal barrier protein, cause the inflammatory skin disease AD, and that a loss of AJ components, namely epidermal p120 catenin or α-catenin results in skin inflammation.  相似文献   

8.
Epidermis is a self-renewing, multilayered tissue composed primarily of keratinocytes. The epidermal keratinocyte follows a terminal differentiation pathway that under normal circumstances is tightly linked to its position within the epidermis and culminates in the formation of the protective barrier (stratum corneum) that constitutes the outermost layer of skin. Strong but pliant adhesive mechanisms are essential for normal functioning of the epidermis. In the epidermis, adhesion is mediated primarily by four structures: hemidesmosomes and focal adhesions, which function in cell-matrix adhesion, and desmosomes and adherens junctions, which function in cell-cell adhesion. In this review we concentrate on the transmembrane components of these structures, which are thought to mediate directly the adhesive function. Members of the integrin family of adhesion molecules comprise the transmembrane components of hemidesmosomes and focal adhesions, although hemidesmosomes also have a second, unrelated transmembrane molecule known as 'bullous pemphigoid antigen 2'. Members of the cadherin family are the transmembrane constituents of desmosomes and adherens junctions. Desmosomes consistently contain two types of cadherins (desmoglein and desmocollin), while adherens junctions may contain only one type of cadherin (E- or P-cadherin). Expression of most of the transmembrane components varies with the position of the keratinocyte within the epidermis and thus may reflect the degree of epidermal differentiation. All of the integrin subunits have been localized predominantly to the basal layer. In contrast, the cadherins show very complex expression patterns throughout the epidermis. Desmogleins and desmocollins (the desmosomal cadherins) are each encoded by three genes, and the expression of each gene is limited to certain epidermal layers. With respect to the cadherins of the adherens junction, it has been shown that E-cadherin is present throughout the epidermis, while P-cadherin is limited to the basal layer. Interestingly, these complex expression patterns of integrins and cadherins within the epidermis may not simply be passive events in differentiation; rather, evidence is accumulating that adhesion molecules can exert a dynamic role in epidermal differentiation/stratification. For example, decreased adhesion to extracellular matrix, induced by changes in one or more integrins, appears to be a signal that induces certain differentiation-related events. Even more profound effects on epidermal morphogenesis have been demonstrated for the cadherins. E- and/or P-cadherin is required not only to initiate normal intercellular junction formation but also for the subsequent development of a stratified epithelium. Thus, the findings to date with both integrins and cadherins suggest that adhesion molecules may function not just as direct mediators of adhesion, but also as regulators of epidermal stratification, differentiation, and morphogenesis.  相似文献   

9.
In Hydra viridis, cordons of male germ cells lie in gonadal compartments, which are enlarged spaces between the elongated and “spongy” epidermal cells. The germ cells are surrounded by these cells, except for small areas where the interstitial cells and spermatogonia are in direct contact with the mesoglea. Cells from both epidermis and gastrodermis project cytoplasm into the mesoglea, where they contact each other and form trans-mesogleal bridges. The latter exhibit gap junctions, which are particularly abundant at the spermary region. Here, the mesoglea is thinner then elsewhere in the body. Both epithelia are joined by septate junctions toward their apical ends, which are totally impermeable to horseradish peroxidase (HRP). HRP gained entry to the cells of both epithelia by pinocytosis. Incorporation into the cells was high at the basal disk, in the tentacles, and in the mesoglea in the lower part of the body stalk. The tracer was never found within the gonadal space of the testis during spermatogenesis. In mature spermaries during spermiation, tracer-filled intracellular vacuoles fused with the gonadal spaces as the thin cytoplasmic columns of the epidermal cells ruptured; HRP thus gained access to the germ cells. During spermatogenesis, germ cells of Hydra viridis are in a closed compartment. The barrier that controls the access of metabolites to the germ cells is formed by epidermal cells, thinned-out mesoglea, and numerous transmesogleal interepithelial bridges. The presumed role of the barrier is the control of the environment (1) where interstitial cells are differentiating into spermatogonia and meiosis occurs and (2) in which ripe spermatozoa are kept immotile until spermiation.  相似文献   

10.
The epidermis of Geocentrophora wagini was studied using transmission electron microscopy. The turbellarian body was entirely covered by cilia, whose density was higher on the ventral surface compared with the dorsal one. In all regions examined, the epidermis was made up of a one-layered insunk epithelium. The basal matrix, underlying the epidermis, was a well developed basement membrane (BM) with bilayered structure, overlying the muscle network of circular and longitudinal fibers. The double plasma membranes, extending from the apical surface of epidermis to BM, were linked by specialized cell junctions. This suggested that epidermis had a cellular rather than a cyncytial arrangement. Each insunk epidermal cell was made of two unequal parts: a comparatively thin surface plate attached to BM by hemiadherens junctions, and a massive nucleated portion located below the body wall musculature in the parenchyma. A thin cytoplasmic bridge connected the epidermal plate with the nucleated cell body. The epidermal plates were joined by belt-like junctions along their adjacent surfaces. Inconspicuous zonula adherens (ZA) had a most apical position, and prominent septate junction was arrayed proximally to this zonula. Except ZA, cell boundaries in epidermis were frequently flanked by rows of light tubules and vesicles. In the basal half of the epithelial sheet, they were occassionally accompanied by single cisternae of rough endoplasmic reticulum (RER). The ultrastructure of the insunk cell body and that of the surface plate showed a considerable similarity. The common features were distinctive profiles of RER and GA, the presence of epitheliosomes, light tubules and vesicles, centrioles and fibrous granules. Thus, ultrastructural features allow a rather reliable identification of epidermal cells in the parenchyma, despite the absence of any visible morphological association between cell body and its epidermal plate.  相似文献   

11.
We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells’ passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model’s predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm s−1 in human epidermis and less than 37 nm s−1 in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.  相似文献   

12.
Defects in epidermal barrier function and/or vesicular transport underlie severe skin diseases including ichthyosis and atopic dermatitis. Tight junctions (TJs) form a single layered network in simple epithelia. TJs are important for both barrier functions and vesicular transport. Epidermis is stratified epithelia and lamellar granules (LGs) are secreted from the stratum granulosum (SG) in a sequential manner. Previously, continuous TJs and paracellular permeability barriers were found in the second layer (SG2) of SG in mice, but their fate and correlation with LG secretion have been poorly understood. We studied epidermal TJ-related structures in humans and in mice and found occludin/ZO-1 immunoreactive multilayered networks spanning the first layer of SG (SG1) and SG2. Paracellular penetration tracer passed through some TJs in SG2, but not in SG1. LG secretion into the paracellular tracer positive spaces started below the level of TJs of SG1. Our study suggests that LG-secretion starts before the establishment of TJ barrier in the mammalian epidermis.  相似文献   

13.
Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell-cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.  相似文献   

14.
Phospholipids are a major class of lipids in epidermis, where they serve as a source of free fatty acids that are important for the maintenance of epidermal permeability barrier function. The phospholipid biosynthetic enzyme, 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT), catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, the major precursor of all glycerolipids. We identified an expression pattern of AGPAT isoforms that is unique to epidermis, with relatively high constitutive expression of mouse AGPAT (mAGPAT) 3, 4, and 5 but low constitutive expression of mAGPAT 1 and 2. Localization studies indicate that all five isoforms of AGPAT were expressed in all nucleated layers of epidermis. Furthermore, rat AGPAT 2 and 5 mRNAs increased in parallel with both an increase in enzyme activity and permeability barrier formation late in rat epidermal development. Moreover, after two methods of acute permeability barrier disruption, mAGPAT 1, 2, and 3 mRNA levels increased rapidly and were sustained for at least 24 h. In parallel with the increase in mRNA levels, an increase in AGPAT activity also occurred. Because upregulation of mAGPAT mRNAs after tape-stripping could be partially reversed by artificial barrier restoration by occlusion, these studies suggest that an increase in the expression of AGPATs is linked to barrier requirements.  相似文献   

15.
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.  相似文献   

16.
To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. These actin fibers anchor to a central actin-myosin network, creating a tension-based plane of cytoskeleton across the apical surface of the sheet. Movement of the sheet surface relative to its base expands the zone of intercellular overlap, catalyzing new sites for nascent intercellular junctions. This polarized cytoskeleton is dependent upon alpha-catenin, Rho, and Rock, and its regulation may be important for wound healing and/or stratification, where coordinated tissue movements are involved.  相似文献   

17.
The junctional membrane in the epidermal cells of the larval beetle (Tenebrio molitor L.) is comprised of macular gap junctions embedded in septate junctions. Ultrastructural and morphometric analysis of the distribution of gap junctions within the segmental epidermis suggests that this junction alone could account for the high electrotonic coupling recorded for the epidermal sheet. Analysis of the lanthanum-impregnated septate junction makes it doubtful that this junction serves as a communicating channel between beetle cells. A new model for the septate junction is presented in which pleated septa, less than 30 A thick, connect adjacent plasma membranes; the septa themselves are interconnected by two interseptal platforms that are coplanar with the plasma membranes. Iontophoretic injection of organic tracers into single epidermal cells suggests that only molecules of less than MW 1000 can transfer between cells through low-resistance junctions.  相似文献   

18.
Disruption of the permeability barrier results in an increase in cholesterol synthesis in the epidermis. Inhibition of cholesterol synthesis impairs the repair and maintenance of barrier function. The increase in epidermal cholesterol synthesis after barrier disruption is due to an increase in the activity of epidermal HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase. To determine the mechanism for this increase in enzyme activity, in the present study we have shown by Western blot analysis that there is a 1.5-fold increase in the mass of HMG-CoA reductase after acute disruption of the barrier with acetone. In a chronic model of barrier disruption, essential fatty acid deficiency, there is a 3-fold increase in the mass of HMG-CoA reductase. Northern blot analysis demonstrated that after acute barrier disruption with acetone or tape-stripping, epidermal HMG-CoA reductase mRNA levels are increased. In essential fatty acid deficiency, epidermal HMG-CoA reductase mRNA levels are increased 3-fold. Thus, both acute and chronic barrier disruption result in increases in epidermal HMG-CoA reductase mRNA levels which could account for the increase in HMG-CoA reductase mass and activity. Additionally, both acute and chronic barrier disruption increase the number of low density lipoprotein (LDL) receptors and LDL receptor mRNA levels in the epidermis. Moreover, epidermal apolipoprotein E mRNA levels are increased by both acute and chronic perturbations in the barrier. Increases in these proteins in response to barrier disruption may allow for increased lipid synthesis and transport between cells and facilitate barrier repair.  相似文献   

19.
20.
Recent studies suggest: that the epidermis and pilosebaceous epithelium are important sites of de novo sterol synthesis, and that the rate of cutaneous cholesterol synthesis does not change with alterations in circulating sterol levels. Since cutaneous sterols may be important for permeability barrier function, we studied the effect of experimentally altered barrier function on de novo sterologenesis in the epidermal and dermal layers of the skin. Epidermal sterologenesis appeared to be modulated by the skin's barrier requirements because topical detergent and acetone treatment stimulated de novo synthesis of nonsaponifiable lipids in the epidermis, but not in the dermis. Synthetic activity paralleled both the return of barrier function toward normal and the extent of prior damage to the barrier. Moreover, plastic-wrap occlusion of solvent-treated sites simultaneously corrected both the barrier abnormality and normalized sterol synthesis, further linking increased epidermal sterologenesis to barrier requirements. Whereas topical applications of a variety of other topical lipids did not down-regulate synthesis, epicutaneously applied 25-hydroxycholesterol appeared to diminish synthesis. These results suggest that maintenance of barrier function is one purpose of epidermal de novo nonsaponifiable lipid synthesis, and demonstrate further that, despite a lack of low density lipoprotein receptors, epidermis can regulate its lipid-synthetic apparatus in response to certain specific requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号