首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the exceptionality of network motifs.   总被引:1,自引:0,他引:1  
Getting and analyzing biological interaction networks is at the core of systems biology. To help understanding these complex networks, many recent works have suggested to focus on motifs which occur more frequently than expected in random. To identify such exceptional motifs in a given network, we propose a statistical and analytical method which does not require any simulation. For this, we first provide an analytical expression of the mean and variance of the count under any exchangeable random graph model. Then we approximate the motif count distribution by a compound Poisson distribution whose parameters are derived from the mean and variance of the count. Thanks to simulations, we show that the compound Poisson approximation outperforms the Gaussian approximation. The compound Poisson distribution can then be used to get an approximate p-value and to decide if an observed count is significantly high or not. Our methodology is applied on protein-protein interaction (PPI) networks, and statistical issues related to exceptional motif detection are discussed.  相似文献   

2.
In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks.  相似文献   

3.
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.  相似文献   

4.
5.
As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.  相似文献   

6.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

7.
8.
The architecture of cellular proteins connected to form signaling pathways in response to internal and external cues is much more complex than a group of simple protein-protein interactions. Post translational modifications on proteins (e.g., phosphorylation of serine, threonine and tyrosine residues on proteins) initiate many downstream signaling events leading to protein-protein interactions and subsequent activation of signaling cascades leading to cell proliferation, cell differentiation and cell death. As evidenced by a rapidly expanding mass spectrometry database demonstrating protein phosphorylation at specific motifs, there is currently a large gap in understanding the functional significance of phosphoproteins with respect to their specific protein connections in the signaling cascades. A comprehensive map that interconnects phospho-motifs in pathways will enable identification of nodal protein interactions that are sensitive signatures indicating a disease phenotype from the physiological hemostasis and provide clues into control of disease. Using a novel phosphopeptide microarray technology, we have mapped endogenous tyrosine-phosphoproteome interaction networks in breast cancer cells mediated by signaling adaptor protein GRB2, which transduces cellular responses downstream of several RTKs through the Ras-ERK signaling cascade. We have identified several previously reported motif specific interactions and novel interactions. The peptide microarray data indicate that various phospho-motifs on a single protein are differentially regulated in various cell types and shows global downregulation of phosphoprotein interactions specifically in cells with metastatic potential. The study has revealed novel phosphoprotein mediated signaling networks, which warrants further detailed analysis of the nodes of protein-protein interaction to uncover their biomarker or therapeutic potential.  相似文献   

9.
MOTIVATION: Protein-protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism's proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at an intermediate level: It enables us to identify proteins which share biological interaction motifs, and also to identify potentially missing or spurious interactions. RESULTS: Our new graph model explains observed interactions between proteins by an underlying interaction of complementary binding domains (lock-and-key model). This leads to a novel graph-theoretical algorithm to identify bipartite subgraphs within protein-protein interaction networks where the underlying data are taken from yeast two-hybrid experimental results. By testing on synthetic data, we demonstrate that under certain modelling assumptions, the algorithm will return correct domain information about each protein in the network. Tests on data from various model organisms show that the local and global patterns predicted by the model are indeed found in experimental data. Using functional and protein structure annotations, we show that bipartite subnetworks can be identified that correspond to biologically relevant interaction motifs. Some of these are novel and we discuss an example involving SH3 domains from the Saccharomyces cerevisiae interactome. AVAILABILITY: The algorithm (in Matlab format) is available (see http://www.maths.strath.ac.uk/~aas96106/lock_key.html).  相似文献   

10.
The increasing interest in systems biology has resulted in extensive experimental data describing networks of interactions (or associations) between molecules in metabolism, protein-protein interactions and gene regulation. Comparative analysis of these networks is central to understanding biological systems. We report a novel method (PHUNKEE: Pairing subgrapHs Using NetworK Environment Equivalence) by which similar subgraphs in a pair of networks can be identified. Like other methods, PHUNKEE explicitly considers the graphical form of the data and allows for gaps. However, it is novel in that it includes information about the context of the subgraph within the adjacent network. We also explore a new approach to quantifying the statistical significance of matching subgraphs. We report similar subgraphs in metabolic pathways and in protein-protein interaction networks. The most similar metabolic subgraphs were generally found to occur in processes central to all life, such as purine, pyrimidine and amino acid metabolism. The most similar pairs of subgraphs found in the protein-protein interaction networks of Drosophila melanogaster and Saccharomyces cerevisiae also include central processes such as cell division but, interestingly, also include protein sub-networks involved in pre-mRNA processing. The inclusion of network context information in the comparison of protein interaction networks increased the number of similar subgraphs found consisting of proteins involved in the same functional process. This could have implications for the prediction of protein function.  相似文献   

11.
12.
MOTIVATION: Short linear peptide motifs mediate protein-protein interaction, cell compartment targeting and represent the sites of post-translational modification. The identification of functional motifs by conventional sequence searches, however, is hampered by the short length of the motifs resulting in a large number of hits of which only a small portion is functional. RESULTS: We have developed a procedure for the identification of functional motifs, which scores pattern conservation in homologous sequences by taking explicitly into account the sequence similarity to the query sequence. For a further improvement of this method, sequence filters have been optimized to mask those sequence regions containing little or no linear motifs. The performance of this approach was verified by measuring its ability to identify 576 experimentally validated motifs among a total of 15 563 instances in a set of 415 protein sequences. Compared to a random selection procedure, the joint application of sequence filters and the novel scoring scheme resulted in a 9-fold enrichment of validated functional motifs on the first rank. In addition, only half as many hits need to be investigated to recover 75% of the functional instances in our dataset. Therefore, this motif-scoring approach should be helpful to guide experiments because it allows focusing on those short linear peptide motifs that have a high probability to be functional.  相似文献   

13.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

14.
BACKGROUND: Network motifs within biological networks show non-random abundances in systems at different scales. Large directed protein networks at the cellular level are now well defined in several diverse species. We aimed to compare the nature of significantly observed two- and three-node network motifs across three different kingdoms (Arabidopsis thaliana for multicellular plants, Saccharomyces cerevisiae for unicellular fungi and Homo sapiens for animals). RESULTS: 'Two-node feedback' is the most significant motif in all three species. By considering the sign of each two-node feedback interaction, we examined the enrichment of the three types of two-node feedbacks [positive-positive (PP), negative-negative (NN) and positive-negative (PN)]. We found that PN is enriched in the network of A.thaliana, NN in the network of S.cerevisiae and PP and NN in the network of H.sapiens. Each feedback type has characteristic features of robustness, multistability and homeostasis. Conclusions: We suggest that amplification of particular network motifs emerges from contrasting dynamical and topological properties of the motifs, reflects the evolutionary design principles selected by the characteristic behavior of each species and provides a signature pointing to their behavior and function.  相似文献   

15.
16.
17.
Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.  相似文献   

18.
19.
20.
Motif search in graphs: application to metabolic networks   总被引:1,自引:0,他引:1  
The classic view of metabolism as a collection of metabolic pathways is being questioned with the currently available possibility of studying whole networks. Novel ways of decomposing the network into modules and motifs that could be considered as the building blocks of a network are being suggested. In this work, we introduce a new definition of motif in the context of metabolic networks. Unlike in previous works on (other) biochemical networks, this definition is not based only on topological features. We propose instead to use an alternative definition based on the functional nature of the components that form the motif, which we call a reaction motif. After introducing a formal framework motivated by biological considerations, we present complexity results on the problem of searching for all occurrences of a reaction motif in a network and introduce an algorithm that is fast in practice in most situations. We then show an initial application to the study of pathway evolution. Finally, we give some general features of the observed number of occurrences in order to highlight some structural features of metabolic networks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号