首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The developmental histology of somatic embryo (=embryoid) formation in cultured immature embryos of hybrid maize cultivars (Zea mays L.) is described. Embryos cultured on media containing 2% sucrose formed distinct globular embryoids. These embryoids arose either directly by divisions confined to the epidermal and the subepidermal cells at the coleorhizal end of the scutellum or from a soft and friable embryogenic callus produced by them. On media containing 6% sucrose divisions were initiated in the cells adjacent to the procambium of the cultured embryos. Subsequently, zones of meristematic cells also were observed in the region of the node and in the basal portion of the scutellum. Mature, well organized somatic embryos as well as a compact nodular type of embryogenic callus were produced as a result of localized meristematic activity along the tip of the scutellum toward the coleorhiza. Some embryos formed only the compact type of callus, and shoot primordia were organized later in the surface layers of this callus.Abbreviations CH casein hydrolysate - MS Murashige and Skoog's nutrient medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

2.
The origin and development of zygotic and somatic embryos of Trifolium rubens L. was studied with the aid of paraffin sections and light microscopy. Zygotic embryos were collected, fixed and prepared daily from one to ten days after cross-pollination. Somatic embryos were obtained by plating petiole sections on modified L2 medium with 0.015 mgl-1 picloram and 0.1 mgl-1 6-BAP. Cultured petioles were collected and fixed daily from one to 25 days after plating. Two regions in the vascular bundle sheath of cultured petioles gave rise to callus. The first region was adjacent to the phloem fibers and produced friable callus. The second region gave rise to compact callus that was connected to the fascicular cambium. Somatic embryos originated from single cells in the cortex directly without intervening callus formation and from single cells in the friable callus. In addition, embryos arose from meristematic regions in compact callus. Many early stages of embryogenesis (one, two and four-celled stages) were observed in the cortex and friable callus. Zygotic embryogenesis in Trifolium differs from other legumes in that the suspensor is short and has a broad attachment. This arrangement was observed in zygotic embryos of T. rubens and in many somatic embryos. However, a continuum of somatic embryogenesis was observed where some young embryos had a Trifolium suspensor-like arrangement while others were attached to a long narrow suspensor-like structure more characteristic of Medicago.  相似文献   

3.
Summary Rapid formation of adventitious roots by walnut cotyledon fragments in vitro was traced by light microscopy. It was shown that this plant model is characterized by two major developmental processes: a) confined elongation of the cotyledon petiole caused by a limited number of cell divisions and b) formation of a morphogenetic zone around each initially wounded vascular bundle within 36 h after detachment of the embryonic axis. During the first phase of development, granular storage protein bodies dissolved, and starch grains were deposited mainly in the distal portion of the cotyledon fragments. Rapidly, new globular protein bodies were formed, and phenolic inclusions accumulated in the vacuoles of epidermal and subepidermal cells and of individual cells close to the vascular bundles. Each adventitious root was found to be in continuity with a single vascular bundle of the cotyledon petiole. A short auxin treatment suppressed the formation of large roots and induced numerous tiny rootlets dispersed all over the surface of the cotyledons.Abbreviations IBA indole-3-butyric acid  相似文献   

4.
Summary Somatic embryos produced in vitro may exhibit structural abnormalities that affect their subsequent germination and conversion into plants. To assess the influence of auxin type on embryo initiation and development, a morphological and histological comparison was made of pecan (Carya illinoinensis) somatic embryogenic cultures induced on media with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid (2,4-D), using light and scanning electron microscopy. Both auxins promoted enhanced cell division, particularly in subepidermal cell layers. However, notable differences were observed in mitotic activity, location of embryogenic cell proliferation, epidermal continuity, callus growth, and embryo morphology. Cultures induced on naphthaleneacetic acid had embryogenic regions composed of homogeneous, isodiametric, meristematic cells. Embryos derived from these cultures generally had a normal morphology, were single, and had a discrete apical meristem. In contrast, tissues induced on media with 2,4-D had more intense and heterogeneous regions of cell division. Proliferating cell regions were composed of meristematic cells interspersed with callus and involved more extensive regions of the mesophyll. Marked callus proliferation caused epidermal rupture in some areas. Embryos induced on medium with 2,4-D had a higher incidence of abnormalities that included fasciated, fan-shaped, and tubular embryos. Defined apical meristems were often lacking or partially obliterated due to callus proliferation. The heterogeneous, often intensive proliferation of cells in cultures induced with 2,4-D may interfere with normal patterns of embryo development.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphthaleneacetic acid - SEM scanning electron microscopy  相似文献   

5.
采用离析法和石蜡切片法对单芽狗脊营养器官进行形态解剖研究。结果表明:单芽狗脊叶为异面叶,上、下表皮细胞均为不规则型,仅下表皮有气孔器分布;叶柄维管束有2~6个,自叶柄基部向上至叶轴仅有2个较大的维管束;根状茎薄壁细胞之间有多个维管束散生分布,且富含丰富的淀粉粒;皮层在根的横切结构中占比较大,木质部的发育方式为外始式;单芽狗脊珠芽的发育过程分为三个阶段,珠芽原基的形成期、珠芽原基的分化期、成熟期。  相似文献   

6.
In the present study, the procedures for induction of somatic embryogenesis (SE) in an in vitro culture of the tulip have been developed. SE was initiated on flower stem explants isolated from “Apeldoorn” bulbs during their low-temperature treatment. Bulbs had not been chilled or had been chilled for 12 or 24 weeks at 5°C. The explants were cultured with exogenous auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 4-amino-3,5,6-trichloropicolinic acid (Picloram), α-naphthaleneacetic acid (NAA) at 1–100 μM and cytokinins: benzyladenine (BA) and zeatin (ZEA) at 0.5–50 μM. Increase in auxin concentrations caused an intensive enlargement of the explant parenchyma, which changed into homogenous colorless callus. On the same media, vein bundles developed into yellowish, nodular callus. Picloram was more efficient in inducing the formation of embryogenic nodular callus than 2,4-D, whereas the latter stimulated formation of colorless callus. The base of the lower part of the flower stem isolated from bulbs chilled for 12 weeks proved to be the best explant for callus formation. The highest number of somatic embryos was produced on medium with 25 μM Picloram and 0.5 μM BA. Development of adventitious roots was noticed in the presence of 2,4-D. Globular embryos developed into torpedo stage embryos under the influence of BA (5 μM) and NAA (0.5 μM). Morphological and anatomical data describing development of callus and somatic embryos are presented.  相似文献   

7.
Summary Structure and ultrastructure changes that occurred during tissue culture of upper explants of hypocotyl (adjacent to cotyledons) of 10-d-old seedlings of Gentiana cruciata were studied. The explants were cultured on Murashige and Skoog induction medium supplemented with 1.0 mg l−1 dicamba +0.1 mg l−1 naphthaleneacetic acid +2.0 mg l−1 benzyladenine +80.0 mg l−1 adenine sulfate. The initial response of the explant and callus formation were ultrastructurally analyzed during the first 11 d of culture. After 6–8 wk, various methods were employed to collect evidence of indirect somatic embryogenesis. After 48 h of culture, the earliest cell response was cell division of epidermis and primary cortex. There were numerous disturbances of karyo- and cytokinesis, leading to formation of multinuclear cells. With time, the divisions ceased, and cortex cells underwent strong expansion, vacuolization and degradation. About the 6th day of culture, callus tissue proliferated and the initial divisions of vascular cylinder cells were observed. Their division appeared normal. Cells originating from that tissue were small, weakly vacuolated, with dense cytoplasm containing active-looking cell organelles. Numerous divisions occurred in the vascular cylinder, which led to its expansion and the formation of embryogenic callus tissue. During the 6–8th wk of culture, in the proximal end of the explant, masses of somatic embryos were formed from outer parts of intensively proliferating tissue.  相似文献   

8.
 Histological analysis was performed aimed at elucidating the origin and the developmental process of somatic embryos of two Brazilian cultivars of barley (Hordeum vulgare vulgare), 'MN-599' and 'A-05'. The observed site of somatic embryo origin (SSEO) could originate from a superficial callus cell, possibly indicating a unicellular origin, or from epidermal and subepidermal callus cells, representing a multicellular origin. A fold, the somatic embryo scutellum that subsequently develops into a cotyledonary leaf, indicates the somatic embryo differentiation. The somatic embryos also showed a growth increase of the primary root and, occasionally, a delay in root development. A possible alternative pathway for the origin of somatic embryos is suggested, in which a SSEO forms a clump of somatic embryos. Received: 4 June 1998 / Revision received: 28 August 1998 / Accepted: 7 December 1998  相似文献   

9.
为了解酢浆草(Oxalis corniculata)叶片和花朵的感夜性,采用半薄切片方法对其叶枕和花托进行形态解剖学观察。结果表明,黑暗处理酢浆草后叶片完全闭合,3枚叶片以叶轴为轴线向下紧贴闭合。黑暗处理8 h花瓣完全闭合并螺旋成束状,花萼紧贴螺旋的花瓣但不发生螺旋。叶片张开时屈肌侧皮层薄壁细胞收缩,伸肌侧皮层薄壁细胞膨大。叶片闭合时屈肌侧皮层细胞膨胀,伸肌侧表皮细胞和3~5层外皮层薄壁细胞收缩。花朵闭合时,花托基部的5个维管束收缩合并成2束明显分离的维管束群,且存在细胞壁加厚的现象;花托角隅处细胞膨胀。叶枕中的屈肌和伸肌细胞的收缩或膨胀控制酢浆草叶片的感夜运动,酢浆草花朵的感夜运动主要与花托基部的维管束群和花托角隅处细胞的膨大和收缩有关。  相似文献   

10.
Immature embryos of Panicum maximum Jacq. (Guinea grass) were cultured on Murashige and Skoog's medium containing 2,4-dichlorophenoxyacetic acid (5 mg/1) and coconut milk (5%). The epidermal and subepidermal cells of the scutellum at the coleorhizal end either formed somatic embryos directly or gave rise to embryogenic callus at several loci. Somatic embryos were formed later also at the periphery of these embryogenic calli. The embryoids originated from single, densely staining, nonvacuolated and starch-containing cells with thickened walls and developed through characteristic stages of grass embryogeny.  相似文献   

11.
香雪兰的体细胞胚胎发生可通过两种途径进行,即直接发生与间接发生。在直接发生方式中,体细胞胚直接来源于尚未完全分化的外植体表皮细胞;体细胞胚与母体组织以一种类似胚柄的结构相联系。间接发生方式中,体细胞胚的形成要经过一个愈伤组织阶段。以是否能形成体细胞胚分类,可将愈伤组织分为胚性和非胚性愈伤组织。以间接方式形成的体细胞胚是由胚性愈伤组织中的一种决定细胞发育来的。这种体细胞胚不具有类似胚柄的结构,而与母体组织共同形成一个复合体。体细胞胚具有自己独立的维管束系统,在脱离母体组织后能够独立发育成株。  相似文献   

12.
L Wang  X G Duan  S Hao 《实验生物学报》1999,32(2):175-183
Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.  相似文献   

13.
Floral morphogenesis in thin-layer tissue cultures of Nicotiana tabacum   总被引:2,自引:0,他引:2  
The morphological changes in thin-layer tissues of Nicotiana labacum L. cv. Samsun, cultured on Murashige and Skoog medium with 1 μ M each of naphthalene acetic acid (NAA) and benzyladenine (BA), were studied during the first 8 days of culture with light and scanning electron microscopy. The first three days of culture arc characterized by enlargement of all cells and cell divisions starling in the cortical parenchyma cells adjacent to the medium. Between days 3 and 6, epidermal and/or subepidermal cells start to divide, resulting in division centers, which lead to flower bud formation. The hormones NAA and BA in different concentrations affect the formation and distribution of flower buds, bud morphology and callus formation. BA influences particularly bud formation and bud morphology, while NAA affects callus formation in particular. In addition, polarity may occur in the formation of both callus and flower buds, the degree of which depends upon the hormone concentrations.  相似文献   

14.
Summary An anatomical study was carried out during the sequences of events which lead to the differentiation of secondary embryos ofCamellia reticulata cv ‘Mouchang’. Secondary embryogenesis can be induced by culturing somatic embryos on a modified Murashige and Skoog medium supplemented with 0.5 mg·liter−1 6-benzylaminopurine and 0.1 mg·liter−1 indole-3-butyric acid. After about 12 days of culture, globular-shaped secondary embryos became apparent, and by 18 to 20 days of culture cotyledonary stages were formed. Embryos developed mainly on the hypocotyl of primary embryos without an intermediate callus. Histologic monitoring revealed that secondary embryos apparently had a multicellular origin from embryogenic areas originating in both epidermal and subepidermal layers of the hypocotyl region. This morphogenetic competence is related to the presence, at the time of culture, of relatively undifferentiated cells in superfical layers of the primary embryo hypocotyl. Microcomputer image analysis was applied for quantifying cytological events associated with somatic embryogenesis. This method showed an increasing gradient in the nucleus-to-cell area ratio from differentiated cells passing through preembryogenic cells to embryogenic cells. The formation of embryogenic areas was preceded by accumulation of starch in the surrounding cortical cells. The cells underlying globular secondary embryos still contained abundant starch, but it declined as the secondary embryos developed.  相似文献   

15.
Tissue cultures of the halophytic saltmarsh grass Sporobolus virginicus were initiated from unemerged immature inflorescence tissue. Typical graminaceous embryogenic and nonembryogenic callus and cell types were noted. Embryogenic callus was compact golden yellow. Histological evidence indicated that proliferation of the ovary tissue of the immature pistil was the source for embryogenic callus. Plants regenerated after first reducing and then eliminating auxin from the culture medium. Regeneration was observed both through the concerted development of bipolar meristems from somatic embryos and by the formation of multiple shoot meristems that were either connected through callus tissue to root meristems or which later adventitiously rooted. The main mode of regeneration appeared to be somatic embryogenesis with additional multiple shoot formation probably due to precocious germination of somatic embryos. Plants recovered from culture were acclimated to soil, grown up in a greenhouse, and planted in field plots with saline irrigation to ensure stability of salt tolerance.  相似文献   

16.
The anatomy of direct shoot organogenesis from leaf petioles of Vitis vinifera cv. French Colombard cultured in vitro was studied by light microscopy. Regenerating petiole stubs were fixed at 2- or 3-day intervals and sectioned longitudinally. By day 3 on regeneration medium, new cell divisions were observed. After 6 days, three distinct regions of meristematic activity were apparent within the expanding petiole stub: the wound-response, organogenic, and vascularization regions. In the organogenic region, rapid periclinal divisions of vacuolate outer cortical cells formed nodular bumps, many of which developed vascular strands and marginal meristems and formed adventitious leaves. Promeristems with small, densely staining cells and a distinct tunica layer also originated in the organogenic region, by cell division in the epidermal and subepidermal cell layers. With vascularization and the formation of leaf primordia, many promeristems became adventitious shoot meristems. Adventitious leaves and promeristems were initiated continuously from day 10 until day 33. Promeristems were often initiated near or upon adventitious leaves but could form either before or after the adventitious leaf developed. Adventitious leaves and shoot meristems developed vascular connections with the vascular bundles of the original expiant. The implication of this pattern of regeneration for Agrobacterium-mediated transformation of Vitis is discussed.  相似文献   

17.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

18.
Summary An in vitro propagation system was developed for Echinacea purpurea L. (purple coneflower), a medicinal plant commonly used in the treatment of colds, flu and related ailments. Echinacea seeds were found to be contaminated with systemic fungi and therefore an optimized minimal concentration of Plant Preservation Mixture (PPM) was incorporated in the seed germination medium to recover sterile seedlings. Regeneration was induced on petiole explants from 2-month-old sterile seedlings cultured on medium supplemented with benzylaminopurine (BAP) or thidiazuron (TDZ) in combination with indoleacetic acid (IAA). Two distinct forms of regeneration were identified in cultured petiole explants with histological and morphological observations, viz. the direct formation of somatic embryos on the epidermis and the de novo development of shoots from callus tissues formed in subepidermal cell layers. the results of this study have established a micropropagation system for E. purpurea that will provide sterile plant material for further investigations into medicinally active biochemicals and may facilitate mass production of high-quality E. purpurea plants for the commercial market.  相似文献   

19.
Summary Seeds of theArabidopsis thaliana mutant primordia timing (pt) were germinated in 2,4-dichlorophenoxyacetic acidcontaining liquid medium. The seedlings formed somatic embryos and nonembryogenic and embryogenic callus in vitro in a time period of approximately two to three weeks. Embryogenesis and callus formation were monitored with respect to origin, structure, and development. Ten days after germination globular structures appeared in close vicinity of and on the shoot apical meristem (SAM). Somatic embryos formed either directly on the SAM region of the seedling or indirectly on embryogenic callus that developed at the SAM zone. Globular structures developed along the vascular tissue of the cotyledons as well, but only incidentally they formed embryos. Upon deterioration, the cotyledons formed callus. Regular subculture of the embryogenic callus gave rise to high numbers of somatic embryos. Such primary somatic embryos, grown on callus, originated from meristematic cell clusters located under the surface of the callus. Embryos at the globular and heart-shape stage were mostly hidden within the callus. Embryos at torpedo stage appeared at the surface of the callus because their axis elongated. Secondary somatic embryos frequently formed directly on primary ones. They preferentially emerged from the SAM region of the primary somatic embryos, from the edge of the cotyledons, and from the hypocotyl. We conclude that the strong regeneration capacity of thept mutant is based on both recurrent and indirect embryogenesis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DIC days in culture - SAM shoot apical meristem  相似文献   

20.
S. Lachaud  J. L. Bonnemain 《Planta》1984,161(3):207-215
Branches were cut from young beeches (Fagus sylvatica L.) at various stages of the annual cycle and [3H]indole-3-acetic acid (0.35 nmol) was applied to the whole surface of the apical section of each branch, just below the apical bud. The labelled pulse (moving auxin) and the following weakly radioactive zone (auxin and metabolites retained by the tissues) were localized by counting: microautoradiographss were made using cross sections from these two regions. During the second fortnight of April, auxin was transported by nearly all the cells of the young primary shoot, but the label was more concentrated in the vascular bundles. Auxin transport became the more localized: the cortical parenchyma appeared to lose its ability to transport the hormone (end of April), followed in turn by the pith parenchyma (May). Polar auxin movement at that time was limited to the outer part of the bundle (cambial zone and phloem) and to the inner part (protoxylem parenchyma). Later protoxylem parenchyma ceased to carry auxin. During the whole period of cambial activity, auxin was transported and retained mainly by the cambial zone and its recent derivatives. In September, before the onset of dormancy, and in February, at the end of the resting period, the transport pathways and retention sites for auxin were mainly in the phloem, where sieve tubes often completely lacked radiolabel. When cambial reactivation occurred in the one-year shoot, auxin was mainly carried and retained again in the cambial zone and differentiating derivatives.Abbreviation IAA indole-3-acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号