首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic digest of the purified protein as a mixture of PP1 isoforms (TOPP 1-6) indicating that at least 4-6 of the eight known PP1 proteins are expressed in sufficient quantities for purification from A. thaliana suspension cells. The enzyme had a final specific activity of 8950 mU/mg using glycogen phosphorylase a as substrate, had a subunit molecular mass of 35 kDa as determined by SDS-PAGE and behaved as a monomeric protein of approx. 39 kDa on Superose 12 gel filtration chromatography. Similar to the mammalian type 1 protein phosphatases, the A. thaliana enzyme was potently inhibited by Inhibitor-2 (IC(50)=0.65 nM), tautomycin (IC(50)=0.06 nM), microcystin-LR (IC(50)=0.01 nM), nodularin (IC(50)=0.035 nM), calyculin A (IC(50)=0.09 nM), okadaic acid (IC(50)=20 nM) and cantharidin (IC(50)=60 nM). The enzyme was also inhibited by fostriecin (IC(50)=22 microM), NaF (IC(50)=2.1 mM), Pi (IC(50)=9.5 mM), and PPi (IC(50)=0.07 mM). Purification of the free catalytic subunit allowed it to be used to probe protein phosphatase holoenzyme complexes that were enriched on Q-Sepharose and a microcystin-Sepharose affinity matrix and confirmed several proteins to be PP1 targeting subunits.  相似文献   

2.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

3.
The cyclic heptapeptide, microcystin-LR, inhibits protein phosphatases 1 (PP1) and 2A (PP2A) with Ki values below 0.1 nM. Protein phosphatase 2B is inhibited 1000-fold less potently, while six other phosphatases and eight protein kinases tested are unaffected. These results are strikingly similar to those obtained with the tumour promoter okadaic acid. We establish that okadaic acid prevents the binding of microcystin-LR to PP2A, and that protein inhibitors 1 and 2 prevent the binding of microcystin-LR to PP1. We discuss the possibility that inhibition of PP1 and PP2A accounts for the extreme toxicity of microcystin-LR, and indicate its potential value in the detection and analysis of protein kinases and phosphatases.  相似文献   

4.
The catalytic subunits of bovine platelet protein phosphatases were separated into three distinct forms by chromatography on heparin-Sepharose. Each phosphatase was further purified to apparent homogeneity as judged in sodium dodecyl sulfate-polyacrylamide gel yielding single protein bands of 37, 41, and 36 kDa. The 37-kDa phosphatase was excluded from heparin-Sepharose and preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. It was stimulated by polycations (polybrene or histone H1) and was inhibited by okadaic acid (IC50 = 0.3 nM), but its activity was not influenced by inhibitor-2 or heparin. The 41-kDa phosphatase was eluted from heparin-Sepharose by 0.20-0.25 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was stimulated by polycations and inhibited by okadaic acid (IC50 = 2 nM), but its activity was not affected by inhibitor-2 or heparin. The 36-kDa phosphatase was eluted from heparin-Sepharose by 0.45-0.50 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was inhibited by inhibitor-2, heparin, histone H1, and okadaic acid (IC50 = 70 nM). The 37- and 36-kDa phosphatases can be classified as type-2A and type-1 enzymes, respectively. The 41-kDa phosphatase does not precisely fit the criteria of either type, showing only partial similarities to both type-1 and type-2A enzymes and it may represent a novel type of protein phosphatase in bovine platelets.  相似文献   

5.
Calyculin A and okadaic acid: inhibitors of protein phosphatase activity   总被引:44,自引:0,他引:44  
Calyculin A and okadaic acid induce contraction in smooth muscle fibers. Okadaic acid is an inhibitor of phosphatase activity and the aims of this study were to determine if calyculin A also inhibits phosphatase and to screen effects of both compounds on various phosphatases. Neither compound inhibited acid or alkaline phosphatases, nor the phosphotyrosine protein phosphatase. Both compounds were potent inhibitors of the catalytic subunit of type-2A phosphatase, with IC50 values of 0.5 to 1 nM. With the catalytic subunit of protein phosphatase type-1, calyculin A was a more effective inhibitor than okadaic acid, IC50 values for calyculin A were about 2 nM and for okadaic acid between 60 and 500 nM. The endogenous phosphatase of smooth muscle myosin B was inhibited by both compounds with IC50 values of 0.3 to 0.7 nM and 15 to 70 nM, for calyculin A and okadaic acid, respectively. The partially purified catalytic subunit from myosin B had IC50 values of 0.7 and 200 nM for calyculin A and okadaic acid, respectively. The pattern of inhibition for the phosphatase in myosin B therefore is similar to that of the type-1 enzyme.  相似文献   

6.
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.  相似文献   

7.
A novel serine/threonine protein phosphatase is identified, and the catalytic subunit, obtained from a detergent extraction of the pellet generated by a 100,000 x g centrifugation of a whole bovine brain homogenate, is purified and characterized. The protein phosphatase, designated as PP3, has a Mr of 36,000, does not require divalent cations for activity, is stimulated rather than inhibited by inhibitor 2, is inhibited by both okadaic acid and microcystin-LR with an intermediate IC50 compared to type 1 and type 2A protein phosphatases, and preferentially dephosphorylates the beta subunit of phosphorylase kinase. Substrate specificity, immunoblotting with type-specific antisera, and the amino acid sequences of peptides derived from PP3 indicate that PP3 is not an isoform of any known serine/threonine protein phosphatase.  相似文献   

8.
Microcystins produced by cyanobacterial 'blooms' in reservoirs and lakes pose significant public health problems because they are highly toxic due to potent inhibition of protein serine/threonine phosphatases in the PPP family. A dehydrobutyrine (Dhb)-containing microcystin variant [Asp3, ADMAdda5, Dhb7]microcystin-HtyR isolated from Nostoc sp. was found to potently inhibit PP1, PP2A, PPP4 and PPP5 with IC50 values similar to those of microcystin-LR. However, in contrast to microcystin-LR, which forms a covalent bond with a cysteine residue in these protein phosphatases, Asp,ADMAdda,Dhb-microcystin-HtyR did not form any covalent interaction with PP2A. Since the LD50 for Asp,ADMAdda,Dhb-microcystin-HtyR was 100 microg kg(-1) compared to 50 microg kg(-1) for microcystin-LR, the data indicate that the non-covalent inhibition of protein phosphatases accounts for most of the harmful effects of microcystins in vivo. A 3-amino-6-hydroxy-2-piperidone containing cyclic peptide, nostocyclin, also isolated from Nostoc sp., was non-toxic and exhibited more than 500-fold less inhibitory potency towards PP1, PP2A, PPP4 and PPP5, consistent with the conclusion that potent inhibition of one or more these protein phosphatases underlies the toxicity of microcystins, both lacking and containing Dhb.  相似文献   

9.
The regulation of carbohydrate metabolism involves changes in the phosphorylation state of enzymes. We used okadaic acid, a potent inhibitor of protein phosphatases type 2A (IC50 0.05-2 nM) and type 1 (IC50 10-20 nM) to determine the role of these phosphatases in the control of carbohydrate metabolism by insulin in rat hepatocytes. In the absence of insulin, okadaic acid caused total inhibition of glycogen synthesis at 100 nM and half-maximal inhibition at 8-9 nM. In the presence of insulin, lower concentrations of okadaic acid (to which type 2A phosphatases are sensitive) were effective at inhibiting glycogen synthesis. 2.5 nM okadaic acid caused total inhibition of the 2-fold stimulation of glycogen synthesis by insulin but had no effect on the basal unstimulated rate of glycogen synthesis. This suggests the involvement of type 2A protein phosphatases in the stimulation of glycogen synthesis by insulin. Okadaic acid (5 nM), partially suppressed but did not abolish the increase in glucokinase mRNA levels caused by insulin, indicating that dephosphorylation mechanisms may be involved in the control of glucokinase mRNA levels by insulin. It is concluded that activation of protein phosphatases type 1 and/or type 2A by insulin may have a widespread role in the control of glucose metabolism at various sites.  相似文献   

10.
The design and synthesis of AX7574, a microcystin-derived probe for serine/threonine phosphatases, is described. A key step in the synthesis was the conjugation under basic conditions of a tetramethylrhodamine 1,3-diketone derivative to the arginine side chain present in microcystin-LR. The resulting conjugate specifically labeled the active site of protein phosphatases 1 (PP-1) with a 1:1 stoichiometry and IC50 of 4.0 nM. AX7574 was used to isolate and identify PP-1, PP-2A, PP-4, and PP-6 in Jurkat cells. Finally, AX7574 was able to record changes in the phosphatase activity levels of calyculin A treated Jurkat cells versus untreated control cells.  相似文献   

11.
We have established an assay to measure protein phosphatase activity in mouse oocytes using [32P]-radiolabeled phosphorylase a as the substrate. Removal of the radiolabel from the substrate in vitro was linear with time and could be inhibited totally by the addition of okadaic acid (inhibitor of type 1 and type 2 protein phosphatases), or partially by protein inhibitor 2 (inhibitor of type 1 protein phosphatases). We performed a detailed study of the activity of type 2A protein phosphatases in mouse oocytes undergoing meiotic maturation and after parthenogenetic activation of mature oocytes arrested in metaphase II. Significant changes in the activity of type 2A protein phosphatases were observed during the first meiotic and the first mitotic cell cycles. These alterations in type 2A protein phosphatase activity occurred in the absence of changes in the quantity of the catalytic sub-unit and can be correlated with changes in the activity of protein kinases and rearrangement of the cellular cytoskeleton. Our observations support a role for type 2A protein phosphatases in cell cycle regulation and demonstrate that, like the protein kinases, the type 2A phosphatases also undergo changes in their activity during early mammalian development.  相似文献   

12.
Okadaic acid (OA), a potent inhibitor of protein phosphatases type 1 and type 2A, inhibited thrombin-induced platelet aggregation (IC50 = 0.8 microM), [14C]serotonin release and increase in intracellular Ca2+ ([Ca2+]i) in the same dose dependence. In the absence of thrombin OA increased the phosphorylation of 50-kDa protein and 20-kDa myosin light chain (MLC20). The 50-kDa protein phosphorylation was accomplished within a shorter time period and at a lower concentration than was the MLC20. OA decreased the thrombin-induced phosphorylation of 47-kDa protein and MLC20, although phosphorylation of MLC20 reincreased at higher concentrations of OA (5-10 microM). Since type 2A phosphatase is more sensitive to OA than type 1, these results suggest that type 2A phosphatases are involved in the regulation of Ca2+ signaling in thrombin-induced platelet activation.  相似文献   

13.
Type-1 protein serine/threonine phosphatases (PP1) are uniquely inhibited by the mammalian proteins, inhibitor-1 (I-1), inhibitor-2 (I-2), and nuclear inhibitor of PP1 (NIPP-1). In addition, several natural compounds inhibit both PP1 and the type-2 phosphatase, PP2A. Deletion of C-terminal sequences that included the beta12-beta13 loop attenuated the inhibition of the resulting PP1alpha catalytic core by I-1, I-2, NIPP-1, and several toxins, including tautomycin, microcystin-LR, calyculin A, and okadaic acid. Substitution of C-terminal sequences from the PP2A catalytic subunit produced a chimeric enzyme, CRHM2, that was inhibited by toxins with dose-response characteristics of PP1 and not PP2A. However, CRHM2 was insensitive to the PP1-specific inhibitors, I-1, I-2, and NIPP-1. The anticancer compound, fostriecin, differed from other phosphatase inhibitors in that it inhibited wild-type PP1alpha, the PP1alpha catalytic core, and CRHM2 with identical IC(50). Binding of wild-type and mutant phosphatases to immobilized microcystin-LR, NIPP-1, and I-2 established that the beta12-beta13 loop was essential for the association of PP1 with toxins and the protein inhibitors. These studies point to the importance of the beta12-beta13 loop structure and conformation for the control of PP1 functions by toxins and endogenous proteins.  相似文献   

14.
Immobilon-bound phosphoproteins labeled with 32P were utilized as substrates to study the enzymes in neutrophils that are active against the major products of protein kinase C. The labeled proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred electrophoretically to immobilon-P membranes. Both particulate and soluble phosphatases were found to be active against the blotted phosphoproteins. Reactions were followed by autoradiography as the loss of 32P from individual protein bands. The tumor promoter okadaic acid and the hepatoxin microcystin-LR inhibited these reactions in a manner consistent with the enzymes being type 1 and/or 2A protein phosphatases.  相似文献   

15.
The antibiotic, tautomycin, was found to be a potent inhibitor of protein phosphatases and equally effective for the type-1 and type-2A enzymes. For the catalytic subunits of the type-1 and type-2A phosphatases the IC50 value was 22 to 32 nM. For the phosphatase activity present in chicken gizzard actomyosin the IC50 value was 6 nM. Tautomycin had no effect on myosin light chain kinase activity. Tautomycin induced a Ca(2+)-independent contraction of intact and permeabilized smooth muscle fibers and this was accompanied by an increase in the level of myosin phosphorylation. Thus, tautomycin by virtue of its ability to inhibit phosphatase activity is a valuable addition for studying the role of protein phosphorylation.  相似文献   

16.
The phosphorylation sites in the myristoylated alanine-rich C kinase substrate or MARCKS protein consist of four serines contained within a conserved, basic region of 25 amino acids, termed the phosphorylation site domain. A synthetic peptide comprising this domain was phosphorylated by both protein kinase C and its catalytic fragment with high affinity and apparent positive cooperativity. Tryptic phosphopeptides derived from the peptide appeared similar to phosphopeptides derived from the phosphorylated intact protein. The peptide was phosphorylated by cAMP- and cGMP-dependent protein kinases with markedly lower affinities. In peptides containing only one of the four serines, with the other three serines replaced by alanine, the affinities for protein kinase C ranged from 25 to 60 nM with Hill constants between 1.8 and 3.0. The potential pseudosubstrate peptide, in which all four serines were replaced by alanines, inhibited protein kinase C phosphorylation of histone or a peptide substrate with an IC50 of 100-200 nM with apparently non-competitive kinetics; it also inhibited the catalytic fragment of protein kinase C with a Ki of 20 nM, with kinetics of the mixed type. The peptide did not significantly inhibit the cAMP- and cGMP-dependent protein kinases. It inhibited Ca2+/calmodulin-dependent protein kinases I, II, and III by competing with the kinases for calmodulin. In addition, the peptide inhibited the Ca2+/calmodulin-independent activity of a proteolytic fragment of Ca2+/calmodulin protein kinase II, with an IC50 approximately 5 microM. Thus, the phosphorylation site domain peptide of the MARCKS protein is a high affinity substrate for protein kinase C in vitro; the cognate peptide containing no serines is a potent but not completely specific inhibitor of both protein kinase C and its catalytic fragment.  相似文献   

17.
The inhibitory effect of a marine-sponge toxin, okadaic acid, was examined on type 1, type 2A, type 2B and type 2C protein phosphatases as well as on a polycation-modulated (PCM) phosphatase. Of the protein phosphatases examined, the catalytic subunit of type 2A phosphatase from rabbit skeletal muscle was most potently inhibited. For the phosphorylated myosin light-chain (PMLC) phosphatase activity of the enzyme, the concentration of okadaic acid required to obtain 50% inhibition (ID50) was about 1 nM. The PMLC phosphatase activities of type 1 and PCM phosphatase were also strongly inhibited (ID50 0.1-0.5 microM). The PMCL phosphatase activity of type 2B phosphatase (calcineurin) was inhibited to a lesser extent (ID50 4-5 microM). Similar results were obtained for the phosphorylase a phosphatase activity of type 1 and PCM phosphatases and for the p-nitrophenyl phosphate phosphatase activity of calcineurin. The following phosphatases were not affected by up to 10 microM-okadaic acid: type 2C phosphatase, phosphotyrosyl phosphatase, inositol 1,4,5-trisphosphate phosphatase, acid phosphatases and alkaline phosphatases. Thus okadaic acid had a relatively high specificity for type 2A, type 1 and PCM phosphatases. Kinetic studies showed that okadaic acid acts as a non-competitive or mixed inhibitor on the okadaic acid-sensitive enzymes.  相似文献   

18.
Lu L  Gao X  Zhu M  Wang S  Wu Q  Xing S  Fu X  Liu Z  Guo M 《Biometals》2012,25(3):599-610
The inhibitory effects of three biguanido-oxovanadium complexes ([VO(L(1-3))(2)]·nH(2)O: HL(1) = metformin, HL(2) = phenformin, HL(3) = moroxydine) against four protein tyrosine phosphatases (PTPs) and an alkaline phosphatase (ALP) were investigated. The complexes display strong inhibition against PTP1B and TCPTP (IC(50), 80-160 nM), a bit weaker inhibition against HePTP (IC(50), 190-410 nM) and SHP-1(IC(50), 0.8-3.3 μM) and much weaker inhibition against ALP (IC(50), 17-35 μM). Complex 3 is about twofold less potent against PTP1B, TCPTP and HePTP than complexes 1 and 2, while complex 2 inhibits SHP-1 more strongly (about three to fourfold) than the other two complexes. These results suggest that the structures of the ligands slightly influence the potency and selectivity against PTPs. The complexes inhibit PTP1B and ALP with a typical competitive type.  相似文献   

19.
Jak3 is a protein tyrosine kinase that is associated with the shared gamma chain of receptors for cytokines IL2, IL4, IL7, IL9, and IL13. We have discovered that a pyridone-containing tetracycle (6) may be prepared from trisubstituted imidazole (5) in high yield by irradiation with >350 nm light. Compound 6 inhibits Jak3 with K(I)=5 nM; it also inhibits Jak family members Tyk2 and Jak2 with IC(50)=1 nM and murine Jak1with IC(50)=15 nM. Compound 6 was tested as an inhibitor of 21 other protein kinases; it inhibited these kinases with IC(50)s ranging from 130 nM to >10 microM. Compound 6 also blocks IL2 and IL4 dependent proliferation of CTLL cells and inhibits the phosphorylation of STAT5 (an in vivo substrate of the Jak family) as measured by Western blotting.  相似文献   

20.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号