首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
东北东部森林生态系统土壤呼吸组分的分离量化   总被引:17,自引:4,他引:17  
杨金艳  王传宽 《生态学报》2006,26(6):1640-1647
对森林生态系统的土壤呼吸组分进行分离和量化,确定不同组分CO2释放速率的控制因子,是估测局域和区域森林生态系统碳平衡研究中必不可少的内容。采用挖壕法和红外气体分析法测定无根和有根样地的土壤表面CO2通量(RS),确定东北东部6种典型森林生态系统RS中异养呼吸(RH)和根系自养呼吸(RA)的贡献量及其影响因子。具体研究目标包括:(1)量化各种生态系统的RH及其与主要环境影响因子的关系;(2)量化各种生态系统RS中根系呼吸贡献率(RC)的季节动态;(3)比较6种森林生态系统RH和RA的年通量。土壤温度、土壤含水量及其交互作用显著地影响森林生态系统的RH(R2=0.465~0.788),但其影响程度因森林生态系统类型而异。硬阔叶林和落叶松人工林的RH主要受土壤温度控制,其他生态系统RH受土壤温度和含水量的联合影响。各个森林生态系统类型的RC变化范围依次为:硬阔叶林32.40%~51.44%;杨桦林39.72%~46.65%;杂木林17.94%~47.74%;蒙古栎林34.31%~37.36%;红松人工林33.78%~37.02%;落叶松人工林14.39%~35.75%。每个生态系统类型RH年通量都显著高于RA年通量,其变化范围分别为337~540 gC.m-2.a-1和88~331 gC.m-2.a-1。不同生态系统间的RH和RA也存在着显著性差异。  相似文献   

2.
Yang J Y  Wang C K 《农业工程》2006,26(6):1640-1646
Quantifying soil respiration components and their relations to environmental controls are essential to estimate both local and regional carbon (C) budgets of forest ecosystems. In this study, we used the trenching-plot and infrared gas exchange analyzer approaches to determine heterotrophic (RH) and autotrophic respiration (RA) in the soil surface CO2 flux for six major temperate forest ecosystems in northeastern China. The ecosystems were: Mongolian oak forest (dominated by Quercus mongolica), aspen-birch forest (dominated by Populous davidiana and Betula platyphylla), mixed wood forest (composed of P. davidiana, B. platyphylla, Fraxinus mandshurica, Tilia amurensis, Acer amono, etc.), hardwood forest (dominated by F. mandshurica, Juglans mandshurica, and Phellodendron amurense), Korean pine (Pinus koraiensis), and Dahurian larch (Larix gmelinii) plantations, representing the typical secondary forest ecosystems in this region. Our specific objectives were to: (1) quantify RH and its relationship with the environmental factors of the forest ecosystems, (2) characterize seasonal dynamics in the contribution of root respiration to total soil surface CO2 flux (RC), and (3) compare annual CO2 fluxes from RH and RA among the six forest ecosystems. Soil temperature, water content, and their interactions significantly affected RH in the ecosystems and accounted for 46.5%–78.8% variations in RH. However, the environmental controlling factors of RH varied with ecosystem types: soil temperature in hardwood and Dahurian larch forest ecosystems, soil temperature, and water content in the others. The RC for hardwood, poplar-birch, mixed wood, Mongolian oak, Korean pine, and Dahurian larch forest ecosystems varied between 32.40%–51.44%, 39.72%–46.65%, 17.94%–47.74%, 34.31%–37.36%, 33.78%–37.02%, and 14.39%–35.75%, respectively. The annual CO2 fluxes from RH were significantly greater than those from RA for all the ecosystems, ranging from 337–540 g Cm-2a-1 and 88‐331 gCm-2a-1 for RH and RA, respectively. The annual CO2 fluxes from RH and RA differed significantly among the six forest ecosystems.  相似文献   

3.
通过整合分析(Meta-analysis)国内外公开发表的81篇模拟酸雨实验论文的2683条有效观测数据,量化了酸雨对中国3个主要陆地生态系统(森林、草地和农田)土壤呼吸(Rs)及其组分(自养呼吸(Ra)、异养呼吸(Rh))的影响。结果表明,酸雨显著降低了Rs(-9.6%)、Rh(-7.7%)和Ra(-11.7%);酸雨pH越低,Rs及其组分的降幅越大;野外实验对Rh和Ra的负效应大于温室实验。酸雨对Rs的负效应在农田最大(-14.7%),草地次之(-10.8%),森林最小(-8.0%);森林Rh、Ra对酸雨的响应与Rs一致,不同林型间差异不显著;草地Rh和Ra在酸雨处理下分别显著降低和增加。Rs、Rh与土壤pH显著正相关,与土壤有机碳(SOC)显著负相关;Rh和Ra分别与地上和地下生物量显著正相关。酸雨对Rs和Ra的负效应随纬度的增加而减弱,随年平均温的升高而增强,对Rs的正效应随年平均降水的降低而增强。研究表明,酸雨不仅降低了土壤pH,抑制了植物生长,减少了植物向土壤的碳输入,还降低了微生物活性,减少了Rh,导致SOC分解降低,因而未显著改变土壤碳库。研究结果将为全球变化背景下我国...  相似文献   

4.
The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta‐analysis using 446 paired observations from 95 published studies to evaluate the effects of plant and litter mixtures on Rs and its components. We found that total Rs and heterotrophic respiration (Rh) were, on average, greater in plant mixtures than expected from those of monocultures. These mixture effects increased with increasing species richness (SR) in both plant and litter mixtures. While the positive effects of species mixtures remained similar over time for total Rs, they increased over time for Rh in plant mixtures but decreased in litter mixtures. Despite the wide range of variations in mean annual temperature, annual aridity index, and ecosystem types, the plant mixture effects on total Rs and Rh did not change geographically, except for a more pronounced increase of total Rs in species mixtures with reduced water availability. Our structural equation models suggested that the positive effects of SR and stand age on total and Rh were driven by increased plant inputs and soil microbial biomass. Our results suggest that plant diversity loss has ubiquitous negative impacts on Rs, one of the fundamental carbon‐cycle processes sustaining terrestrial element cycling and ecosystem function.  相似文献   

5.
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

6.
《植物生态学报》1958,44(6):687
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

7.
We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.  相似文献   

8.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   

9.
To assess the relative influence of edaphoclimatic gradients and stand replacing disturbance on the soil respiration of Oregon forests, we measured annual soil respiration at 36 independent forest plots arranged as three replicates of four age classes in each of three climatically distinct forest types. Annual soil respiration for the year 2001 was computed by combining periodic chamber measurements with continuous soil temperature measurements, which were used along with site-specific temperature response curves to interpolate daily soil respiration between dates of direct measurement. Results indicate significant forest type, age, and type × age interaction effects on annual soil respiration. Average annual soil respiration was 1100–1600, 1500–2100, and 500–900 g C m−2 yr−1 for mesic spruce, montane Douglas-fir, and semi-arid pine forests respectively. Age related trends in annual soil respiration varied between forest types. The variation in annual soil respiration attributable to the climatic differences between forest types was 48%(CV). Once weighted by the age class distribution for each forest type, the variation in annual soil respiration attributable to stand replacing disturbance was 15%(CV). Sensitivity analysis suggests that the regional variation in annual soil respiration is most dependent on summer base rates (i.e. soil respiration normalized to a common temperature) and much less dependent on the site-specific temperature response curves (to which annual rates are relatively insensitive) and soil degree-days (which vary only 10% among plots).  相似文献   

10.
原焕英  江洪  余树全 《生态学报》2009,29(6):3316-3321
桫椤植物最早出现于中生代的晚三叠纪或早侏罗纪,现存的桫椤林是一种非常典型的孓遗陆地生态系统.对桫椤生态系统土壤呼吸特征研究表明,6月份桫椤纯林的土壤呼吸速率很小,去除凋落物和保留凋落物的土壤呼吸速率分别为0.87、0.89μmol · m-2 · s-1,两种处理无显著差异(P>0.05).由于其它生物的入侵,在保护区桫椤林中出现了多种混交的森林类型,比较典型的是毛竹、落叶阔叶林、常绿阔叶林作为桫椤纯林的入侵种与其形成的3种生态系统类型,根据测定的结果,表明这3种生态系统类型的林地土壤呼吸速率均大于桫椤纯林,平均值分别为2.95、2.06、1.33μmol · m-2· s-1,经统计分析,发现它们与桫椤纯林有显著的差异(P<0.001).凋落物对这3种类型的影响表现为,毛竹桫椤混交林、常绿阔叶桫椤混交林差异显著(P<0.001),落叶阔叶和桫椤混交林差异不明显(P>0.05 );在较短时间尺度上对4种森林类型的日动态分析,均表现为一致的平稳状态.在土壤温度和湿度变化较小的情况下,两种处理5cm土壤温度和湿度均与土壤呼吸无明显相关性.  相似文献   

11.
Soil temperature and moisture influence soil respiration at a range of temporal and spatial scales. Although soil temperature and moisture may be seasonally correlated, intra and inter-annual variations in soil moisture do occur. There are few direct observations of the influence of local variation in species composition or other stand/site characteristics on seasonal and annual variations in soil moisture, and on cumulative annual soil carbon release. Soil climate and soil respiration from twelve sites in five different forest types were monitored over a 2-year period (1998–1999). Also measured were stand age, species composition, basal area, litter inputs, total above-ground wood production, leaf area index, forest floor mass, coarse and fine root mass, forest floor carbon and nitrogen concentration, root carbon and nitrogen concentration, soil carbon and nitrogen concentration, coarse fraction mass and volume, and soil texture. General soil respiration models were developed using soil temperature, daily soil moisture, and various site/soil characteristics. Of the site/soil characteristics, above-ground production, soil texture, roots + forest floor mass, roots + forest floor carbon:nitrogen, and soil carbon:nitrogen were significant predictors of soil respiration when used alone in respiration models; all of these site variables were weakly to moderately correlated with mean site soil moisture. Daily soil climate data were used to estimate the annual release of carbon (C) from soil respiration for the period 1998–1999. Mean annual soil temperature did not differ between the 2 years but mean annual soil moisture was approximately 9% lower in 1998 due to a summer drought. Soil C respired during 1998 ranged from 8.57 to 11.43 Mg C ha−1 yr−1 while the same sites released 10.13 and 13.57 Mg C ha−1 yr−1 in 1999; inter-annual differences of 15.41 and 15.73%, respectively. Among the 12 sites studied, we calculated that the depression of soil respiration linked to the drought caused annual differences of soil respiration from 11.00 to 15.78%. Annual estimates of respired soil C decreased with increasing site mean soil moisture. Similarly, the difference of respired carbon between the drought and the non-drought years generally decreased with increasing site mean soil moisture.  相似文献   

12.
典型森林和草地生态系统呼吸各组分间的相互关系   总被引:7,自引:0,他引:7  
生态系统呼吸是陆地生态系统碳收支的重要组成部分,分析其组分间的相互关系对理解生态系统呼吸过程和精确评价生态系统碳收支具有重要意义,也是当前碳循环研究工作的一大难点。本研究利用ChinaFLUX的长白山温带针阔混交林(CBS),鼎湖山亚热带常绿阔叶林(DHS)和海北灌丛草甸(HBGC)三个典型生态系统的通量观测数据,采用经验统计方法,分析了其在中国典型生态系统中的适用性及敏感性,揭示了生态系统呼吸各组分的动态变化特征及相互关系。结果表明:采用本研究中的呼吸组分拆分方法所获结果与理论推测及实测数据大致相同,拆分结果对净初级生产力与总初级生产力的比值(NPP/GPP)较为敏感,NPP/GPP变化0.1时,自养呼吸在生态系统呼吸中的比例(Ra/RE)改变0.05。各生态系统中,生态系统呼吸及其组分在年内均表现出明显的单峰型变化特征,在夏季生长旺盛的时节达到最大值。异养呼吸与生态系统呼吸的比值(Rh/RE)也具有明显的季节变化,但在生态系统间表现出明显差异,CBS和HBGC分别表现出先增大后减小和先减小后增大的变化趋势,DHS则相对稳定,在0.5附近波动, Ra/RE的季节动态与Rh/RE相反。在年总量上,HBGC主要通过异养呼吸向大气排放CO2,异养呼吸占生态系统呼吸的60%,而CBS和DHS的自养呼吸和异养呼吸所占比重大致相似,异养呼吸占生态系统呼吸的49%。这说明,该统计学模型可以用来进行生态系统呼吸组分的拆分,进而可以为生态系统碳循环过程的精细研究提供参考数据,但今后应加强NPP/GPP的测定,以提高生态系统呼吸拆分的精度。  相似文献   

13.
This study compares approximately weekly soil respiration across two forest–pasture pairs with similar soil, topography and climate to document how conversion of pasture to forest alters net soil CO2 respiration. Over the 2.5 year period of the study, we found that soil respiration was reduced by an average of 41% with conversion of pasture to forest on an annual basis. Both pastured sites showed similar annual soil respiration rates. Comparisons of the paired forests, one coniferous and the other broadleaf, only showed a significant difference over one annual cycle. Enhanced soil respiration in pastures may be the result of either enhanced root respiration and/or microbial respiration. Differences in pasture–forest soil respiration were primarily observed during the July through September summer period at all sites, suggesting that this is the critical period for observing and documenting differences. Evaluation of the soil microclimatic controls on soil respiration suggest that soil temperature exerts a major control on this process, and that examining these relationships on a seasonal rather than weekly basis provides the strongest relationships in poorly drained soils. Consistently greater pastured site Q 10s (2.52;2.42) than forested site Q 10s (2.27; 2.17) were observed, with paired-site differences of 0.25.  相似文献   

14.
土壤微生物与根系呼吸作用影响因子分析   总被引:28,自引:1,他引:28  
土壤呼吸作用作为陆地生态系统碳循环的重要组成部分,是当前碳循环研究中的热点问题.对于土壤呼吸作用主要组成部分土壤微生物呼吸作用和根系呼吸作用影响因子的研究,有助于准确地评估全球碳收支.本文从气候、土壤、植被及地表覆被物、大气CO2浓度、人为干扰等方面综述了土壤微生物呼吸作用和根系呼吸作用的主导影响因子,指出这些影响因子不仅直接或间接地影响土壤微生物呼吸作用和根系呼吸作用,而且它们之间相互作用、相互影响,且各影响因子的地位和作用会随时空尺度变化发生相应改变.在此基础上,论文提出了未来土壤呼吸作用的研究重点.  相似文献   

15.
Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2 at high latitude monitoring stations during the non-growing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 °C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30° N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations. In comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.  相似文献   

16.
Ecosystem respiration is a primary component of the carbon cycle and understanding the mechanisms that determine its temperature dependence will be important for predicting how rates of carbon efflux might respond to global warming. We used a rare model system, comprising a network of geothermally heated streams ranging in temperature from 5 °C to 25 °C, to explore the nature of the relationship between respiration and temperature. Using this ‘natural experiment’, we tested whether the natal thermal regime of stream communities influenced the temperature dependence of respiration in the absence of other potentially confounding variables. An empirical survey of 13 streams across the thermal gradient revealed that the temperature dependence of whole‐stream respiration was equivalent to the average activation energy of the respiratory complex (0.6–0.7 eV). This observation was also consistent for in‐situ benthic respiration. Laboratory experiments, incubating biofilms from four streams across the thermal gradient at a range of temperatures, revealed that the activation energy and Q10 of respiration were remarkably consistent across streams, despite marked differences in their thermal history and significant turnover in species composition. Furthermore, absolute rates of respiration at standardised temperature were also unrelated to ambient stream temperature, but strongly reflected differences in biofilm biomass. Together, our results suggest that the core biochemistry, which drives the kinetics of oxidative respiratory metabolism, may be well conserved among diverse taxa and environments, and that the intrinsic sensitivity of respiration to temperature is not influenced by ambient environmental temperature.  相似文献   

17.
Partitioning soil respiration (RS) into heterotrophic (RH) and rhizospheric (RR) components is an important step for understanding and modeling carbon cycling in forest ecosystems, but few studies on RR and RH exist in Chinese temperate forests. In this study, we used a trenching plot approach to partition RS in six temperate forests in northeastern China. Our specific objectives were to (1) examine seasonal patterns of soil surface CO2 fluxes from trenched (RT) and untrenched plots (RUT) of these forests; (2) quantify annual fluxes of RS components and their relative contributions in the forest ecosystems; and (3) examine effects of plot trenching on measurements of RS and related environmental factors. The RT maximized in early growing season, but the difference between RUT and RT peaked in later summer. The annual fluxes of RH and RR varied with forest types. The estimated values of RH for the Korean pine (Pinus koraiensis Sieb. et Zucc.), Dahurian larch (Larix gmelinii Rupr.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), hardwood (Fraxinus mandshurica Rupr., Juglans mandshurica Maxim. and Phellodendron amurense Rupr.), Mongolian oak (Quercus mongolica Fisch.) and mixed deciduous (no dominant tree species) forests averaged 89, 196, 187, 245, 261 and 301 g C m−2 yr−1, respectively; those of RR averaged 424, 209, 628, 538, 524 and 483 g C m−2 yr−1, correspondingly; calculated contribution of RR to RS (RC) varied from 52% in the larch forest to 83% in the pine forest. The annual flux of RR was strongly correlated to biomass of roots <0.5 cm in diameter, while that of RH was weakly correlated to soil organic carbon concentration at A horizon. We concluded that vegetation type and associated carbon metabolisms of temperate forests should be considered in assessing and modeling RS components. The significant impacts of changed soil physical environments and substrate availability by plot trenching should be appropriately tackled in analyzing and interpreting measurements of RS components.  相似文献   

18.
为阐明北亚热带.南暖温带过渡区典型森林生态系统土壤呼吸与其组分的碳排放速率及其对土壤水热变化的响应规律,本研究用壕沟断根法布设了土壤呼吸组分分离试验,并对土壤温湿度与呼吸速率进行了一年的观测。统计分析结果表明:土壤呼吸及其组分的呼吸速率在夏秋季较高、春冬季较低;土壤温度低于15℃时,呼吸速率的季节性变化主要受控于土壤温度;土壤温度高于15℃,而含水量低于0.20kg·kg^-1时,含水量对呼吸速率有明显的抑制作用;当土壤温湿度分别高于15℃与0.20kg·kg^-1,呼吸速率同时受到土壤温湿度的影响;土壤温湿度分别能解释呼吸速率季节性变化的80.36%~94.94%与7.20%~48.45%,温度的影响高于含水量;5种类型中土壤呼吸、自养与异养呼吸的Q10值变化范围分别为2.30~2.44、2.49~2.82与2.09~2.35,每个类型中自养呼吸的温度敏感性均为最高,其次为土壤呼吸,异养呼吸最低;锐齿栎幼林、锐齿栎老林、华山松与短柄袍针阔混交林、千金榆与短柄袍阔叶混交林及栓皮栎林自养呼吸日贡献率的变化范围分别为35.19%~57.73%、28.73%~49.24%、28.67%~49.82%、24.24%~41.70%与30.07%~46.22%,土壤呼吸的年排放量分别为1105.15gC·m^-2·a^-1、779.12gC·m^-2·a^-1、821.23gC·m^-2·a^-1、912.19gC·m^-2·a^-1与899.50gC·m^-2·a^-1,其中自养呼吸的年贡献率分别为52.89%、39.77%、44.17%、38.15%与43.26%,若考虑断根样方内细根分解的影响,则自养呼吸的年贡献率分别为65.56%、47.95%、53.80%、46.83%与53.86%;5个林分间的土壤呼吸速率、异养呼吸速率没有显著差异(P〉0.05),而自养呼吸速率存在显著差异(P〈0.05),类型间活细根生物量的差异解释了自养呼吸速率差异的94.71%。  相似文献   

19.
To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine‐root production vs. root respiration trade‐off; and an above‐ vs. belowground trade‐off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature‐driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil respiration, and its responses to climate in forest ecosystems and are, therefore, valuable for terrestrial carbon simulations and projections.  相似文献   

20.
Soil respiration (Rs), as the second largest flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere, is vulnerable to global nitrogen (N) enrichment. However, the global distribution of the N effects on Rs remains uncertain. Here, we compiled a new database containing 1282 observations of Rs and its heterotrophic component (Rh) in field N manipulative experiments from 317 published papers. Using this up-to-date database, we first performed a formal meta-analysis to explore the responses of Rs and Rh to N addition, and then presented a global spatially explicit quantification of the N effects using a Random Forest model. Our results showed that experimental N addition significantly increased Rs but had a minimal impact on Rh, not supporting the prevailing view that N enrichment inhibits soil microbial respiration. For the major biomes, the magnitude of N input was the main determinant of the spatial variation in Rs response, while the most important predictors for Rh response were biome specific. Based on the key predictors, global mapping visually demonstrated a positive N effect in the regions with higher anthropogenic N inputs (i.e., atmospheric N deposition and agricultural fertilization). Overall, our analysis not only provides novel insight into the N effects on soil CO2 fluxes, but also presents a spatially explicit assessment of the N effects at the global scale, which are pivotal for understanding ecosystem carbon dynamics in future scenarios with more frequent anthropogenic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号