首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Goal, Scope and Background Exergy has been put forward as an indicator for the energetic quality of resources. The exergy of a resource accounts for the minimal work necessary to form the resource or for the maximally obtainable amount of work when bringing the resource’s components to their most common state in the natural environment. Exergy measures are traditionally applied to assess energy efficiency, regarding the exergy losses in a process system. However, the measure can be utilised as an indicator of resource quality demand when considering the specific resources that contain the exergy. Such an exergy measure indicates the required resources and assesses the total exergy removal from nature in order to provide a product, process or service. In the current work, the exergy concept is combined with a large number of life cycle inventory datasets available with ecoinvent data v1.2. The goal was, first, to provide an additional impact category indicator to Life-Cycle Assessment practitioners. Second, this work aims at making a large source of exergy scores available to scientific communities that apply exergy as a primary indicator for energy efficiency and resource quality demand. Methods The indicator Cumulative Exergy Demand (CExD) is introduced to depict total exergy removal from nature to provide a product, summing up the exergy of all resources required. CExD assesses the quality of energy demand and includes the exergy of energy carriers as well as of non-energetic materials. In the current paper, the exergy concept was applied to the resources contained in the ecoinvent database, considering chemical, kinetic, hydro-potential, nuclear, solar-radiative and thermal exergies. The impact category indicator is grouped into the eight resource categories fossil, nuclear, hydropower, biomass, other renewables, water, minerals, and metals. Exergy characterization factors for 112 different resources were included in the calculations. Results CExD was calculated for 2630 ecoinvent product and process systems. The results are presented as average values and for 26 specific groups containing 1197 products, processes and infrastructure units. Depending on the process/product group considered, energetic resources make up between 9% and 100% of the total CExD, with an average contribution of 88%. The exergy of water contributes on the average to 8% the total exergy demand, but to more than 90% in specific process groups. The average contribution of minerals and metal ores is 4%, but shows an average value as high as 38% and 13%, in metallic products and in building materials, respectively. Looking at individual processes, the contribution of the resource categories varies substantially from these average product group values. In comparison to Cumulative Energy Demand (CED) and the abiotic-resource-depletion category of CML 2001 (CML’01), non-energetic resources tend to be weighted more strongly by the CExD method. Discussion Energy and matter used in a society are not destroyed but only transformed. What is consumed and eventually depleted is usable energy and usable matter. Exergy is a measure of such useful energy. Therefore, CExD is a suitable energy based indicator for the quality of resources that are removed from nature. Similar to CED, CExD assesses energy use, but regards the quality of the energy and incorporates non-energetic materials like minerals and metals. However, it can be observed for non-renewable energy-intensive products that CExD is very similar to CED. Since CExD considers energetic and non-energetic resources on the basis of exhaustible exergy, the measure is comparable to resource indicators like the resource use category of Eco-indicator 99 and the resource depletion category of CML 2001. An advantage of CExD in comparison to these methods is that exergy is an inherent property of the resource. Therefore less assumptions and subjective choices need to be made in setting up characterization factors. However, CExD does not coversocietal demand (distinguishing between basic demand and luxury), availability or scarcity of the resource. As a consequence of the different weighting approach, CExD may differ considerably from the resource category indicators in Eco-indicator 99 and CML 2001. Conclusions The current work shows that the exergy concept can be operationalised in product life cycle assessments. CExD is a suitable indicator to assess energy and resource demand. Due to the consideration of the quality of energy and the integration of non-energetic resources, CExD is a more comprehensive indicator than the widely used CED. All of the eight CExD categories proposed are significant contributors to Cumulative Exergy Demand in at least one of the product groups analysed. In product or service assessments and comparative assertions, a careful and concious selection of the appropriate CExD-categories is required based on the energy and resource quality demand concept to be expressed by CExD. Recommendations and Perspectives A differentiation between the exergy of fossil, nuclear, hydro-potential, biomass, other renewables, water and mineral/metal resources is recommended in order to obtain a more detailed picture of resource quality demand and to recognise trade-offs between resource use, for instance energetic and non-energetic raw materials, or nonrenewable and renewable energies. ESS-Submission Editor: Dr. Gerald Rebitzer (Gerald.Rebitzer@alcan.com)  相似文献   

2.
3.
    
The article describes the extended exergy accounting technique (EEA), a novel method for computing the cost of a commodity based on its resource-base equivalent value (as opposed to its monetary cost) that enables the analyst to perform more complete and meaningful assessments of a complex system. The claim made here is that the novelty, as well as the decisive advantage, of EEA consists in its being entirely and uniformly resource based, thanks to the inclusion in the system balance of exergetic fluxes equivalent to labor, capital, and environmental remediation costs. In this respect, EEA owes some of its structural formalism to Sraffa's network representation of the economic production of commodities by means of other commodities, which it extends by accounting for the unavoidable energy dissipation in the productive chain (whose economic implications were first discussed by Georgescu-Roegen), to Daly's pioneering work in resource-oriented economics, and to Szargut's cumulative exergy consumption method.
The representation of a process by means of its extended exergy flow diagram is discussed in this article, and it is argued that some of the issues that are difficult to address with a purely monetary approach can be properly resolved by EEA. The main shortcomings of EEA are its intrinsic locality in time and space: They are demonstrated to be necessary and not casual consequences of its very definition and of the nonuniformity of societal conditions. In the conclusions, some indications are given as to the possibility of using this new technique to complement (and extend) other current tools, such as life-cycle assessment or environmental footprint analysis.  相似文献   

4.
    
  • Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage‐based peatland agriculture into wet, climate‐friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop.
  • We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen‐saturated conditions.
  • A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha?1·year?1).
  • Large‐scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum.
  相似文献   

5.
勐宋Sangpabawa中棕榈藤资源的保护和持续利用   总被引:1,自引:0,他引:1       下载免费PDF全文
孟少武  陈三阳   《广西植物》1998,18(2):100-104
物种多样性的研究是生物多样性研究的基础,对生物多样性的保护具有重要意义。Sang pabawa是哈尼语“头人的藤林”,它是我国仅有的为保护棕榈藤资源而建立的自然保护区。本文通过对勐宋Sangpabawa中棕榈藤资源现状的研究,分析了棕榈藤数量锐减的原因:1.市场经济新形势下,管理不善,造成人们过度采收藤条,并且采收时滥砍乱伐;2.外界干扰影响了棕榈藤的正常自然更新;3.良种藤的栽培使非良种藤在当地处于濒危或渐危状态。并提出利用价值是衡量保护价值的一个重要标准这一原则。在此基础上,提出勐宋Sangpabawa中棕榈藤资源的保护对策:1.挖掘藤类资源的利用价值,增强人们对它的保护意识;2.加强对Sangpabawa的管理,完善村规民约,防止偷砍乱伐;3.建立棕榈藤收集区和种苗基地,保护藤类资源多样性,满足生产种植需求;4.建立商品藤生产和加工基地,满足市场需求。  相似文献   

6.
高德新  王帅  李琰  王聪  魏芳莉  傅伯杰  李彤 《生态学报》2021,41(14):5507-5516
光能利用率(Light use efficiency: LUE)指植物截获的光能转化为化学能的效率,表示为生产力和吸收光能之比。基于LUE概念的模型对模拟预测全球变化下碳循环、植被生产力及其潜力具有重要意义。全球变化和人类活动影响给植被生产力和碳循环的评估带来了巨大挑战。系统梳理了LUE模型的不确定性并分析其原因,以期提高生产力模拟预测的准确度。分析发现LUE模型准确度仅为62%-70%且模型间差异较大(32%),误差随着植被类型、时间尺度和空间区域的不同存在显著差别。目前计算LUE的误差是模型不确定性的关键,原因主要在于LUE与影响因素尤其是水分的关系并不清楚。一方面不能准确区分水分胁迫指标对LUE的影响机制,另一方面无法准确模拟水分等影响因素与LUE关系的时空演变特征。未来该领域研究的重要方向是发展集成样地和区域尺度的叶绿素荧光、光化学指数等研究方法,厘定LUE与影响因素特别是的水分关系,并分析其时空演变特征。  相似文献   

7.
G. I. Ågren 《Oecologia》1994,98(2):239-240
Effects of CO2 on plants are often confounded with effects of nutrition. Coleman et al. (1993) showed that nitrogen concentrations in plants grown under different CO2 levels did not differ if plants of equal sizes were compared but varied at equal times and equal sizes for different levels of nitrogen additions. I will suggest why this must occur under the conditions of the experiment. I will also suggest why nitrogen productivity should be used to interpret experimental results rather than the dubious nitrogen use efficiency.  相似文献   

8.
This article discusses whether “sustainability” has a physical meaning in applied thermodynamics. If it has, then it should be possible to derive general principles and rules for devising “sustainable systems.” If not, then other sides of the issue retain their relevance, but thermodynamic laws are not appropriate by themselves to decide whether a system or a scenario is sustainable. Here, we make use of a single axiom: that final consumption (material or immaterial) can be quantified solely in terms of equivalent primary exergy flows. On this basis, we develop a system theory that shows that if “simple” systems are based solely on the exploitation of fossil resources, they cannot be thermodynamically “sustainable.” But as renewable resources are brought into the picture and the system complexity grows, there are thresholds below or beyond which the system exhibits an ability to maintain itself (perhaps through fluctuations), in a self‐preserving (i.e., a sustainable) state. It appears that both complexity and the degree of nonlinearity of the transfer functions of the systems play a major role and—even for some of the simplest cases—lead to nontrivial solutions in phase space. Therefore, even if the examples presented in the article can be considered rather crude approximations to real, complex systems at best, the results show a trend that is worth further consideration.  相似文献   

9.
10.
    
The resource‐development trajectory of developed countries after the Industrial Revolution of the eighteenth and nineteenth centuries can be portrayed as an “environmental mountain” (EM). It is important for developing countries to decouple their resource use from economic growth and tunnel through the EM. In this study, we embedded the decoupling indicators for resource use and waste emissions into EM curves to quantify China's progress in tunneling through the EM over a specific time period. Five case studies regarding the conditions required for decoupling energy consumption, crude steel production, cement production, CO2 emissions, and SO2 emissions from economic growth in China were conducted. The results indicated that during 1985–2010 the trajectories of energy consumption, and CO2 and SO2 emissions in China met the requirements for tunneling through the EM, but the trajectories of cement and steel production did not. Based on these results, suggestions regarding China's environmental policies are provided to enable the country to tunnel through the EM.  相似文献   

11.
  总被引:1,自引:0,他引:1  
This article presents an account of global resource extraction for the year 1999 by material groups, world regions, and development status. The account is based on materials flow analysis methodology and provides benchmark information for political strategies toward sustainable resource management. It shows that currently around 50 thousand megatons of resources are extracted yearly on a global scale, which results in a yearly global average resource use of around 8 tonnes per capita. Assuming further growth in world regions not yet close to the levels of resource use in the industrial cores—such as India or China—numbers could easily double once these parts of the world come to fully incorporate the industrial mode of production and consumption. This article contributes to information on resource use indicators, complementing and enriching information from economic accounting in order to facilitate political measures toward a sustainable use of resources.  相似文献   

12.
城市建筑代谢研究方法及其展望   总被引:2,自引:0,他引:2  
建筑代谢是当前城市代谢研究领域中的一个新兴热点问题,其研究着重关注建筑系统中物质能量流动可能对周围环境产生的压力及其有害影响。本文在阐明城市建筑代谢内涵的基础上,综述了国内外建筑代谢研究方法的进展情况,分析了目前城市建筑代谢研究方法的适用范围及其特点,指出了城市建筑代谢研究方法在未来应从以下几个方面发展:开发跨城市边界的代谢研究方法;注重建筑代谢中非物质性代谢流研究;制定适合乡土建筑地域特点的代谢研究方法;综合物质量和价值量的建筑代谢研究,全面认识和评价建筑的可持续性。  相似文献   

13.
自然资源持续利用的理论分析   总被引:2,自引:0,他引:2  
自然资源持续利用的理论分析赵景柱(中国科学院生态环境研究中心,北京100085)TheoreticalAnalysisonSustainableUseofNaturalResources¥ZhaoJingzhu(ResearchCenterforEc...  相似文献   

14.
15.
Abstract. Rapid, tropic leaf movements and photo-synthetic responses of the heliotropic plant, soybean, Glycine max cv. Cumberland, grown under two different nitrogen, three different light and two different water treatments were examined. Measurements of leaf orientation during midday periods outdoors, and tropic reorientation of leaflets in response to vertical illumination indoors, revealed a positive, linear relationship between leaf water potential and the cosine of the angle of incidence between the leaf and the direct beam of the excitation light. This relationship was altered by nitrogen availability, such that a lower cosine of incidence (lower leaf irradiance) for a given leaf water potential was measured for plants grown under low nitrogen compared to those grown under high nitrogen. Additionally, plants grown under low nitrogen and low water availability showed more rapid rates of leaf movement compared to plants receiving high levels of these resources. Light regime during growth had no effect on the relationship between the cosine of incidence and leaf water potential. Reduced water and nitrogen availabilities during growth resulted in lower photosaturated rates of photosynthesis and stomatal conductance, as well as alterations in the relationship between these parameters. Thus, higher values for the ratio of intercellular CO2/ambient CO2 were measured for low-N grown plants (higher nitrogen use efficiencies) and lower values of this ratio for water stressed plants (higher water use efficiencies). The results show that environmental growth conditions other than water availability have the potential to modify leaf orientation responses to vectorial light in heliotropic legumes such as soybean. This has implications for the potential of heliotropic movements to minimize environmental stress-induced damage to the photosynthetic apparatus, and to modulate leaf-level resource use efficiencies.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Aerobic rice is a new production system in which specially-developed varieties are grown under non-flooded, non-puddled, and non-saturated soil conditions. In 2003-2004, irrigation x Nitrogen experiments were carried out near Beijing using variety HD297. Water treatments included four irrigation levels, and Nitrogen treatments included different fertilizer N application rates and different numbers of N splits. The highest yields were 4460 kg/ha with 688 mm of total (rain plus irrigation) water input in 2003 and 6 026 kg/ha with 705 mm of water input in 2004. Because of the quite even distribution of rainfall in both years, the four irrigation treatments did not result in large differences of soil water conditions. There were few significant effects of irrigation on biomass accumulation, but yield increased with the total amount of water applied. High yields coincided with high harvest index and high percentages of grain filling. The application of fertilizer N either reduced biomass and yield or kept it at the same level as 0 N and consistently reduced the percentage grain filling and 1 000-grain weight. With the highest water application, five splits of N gave higher yield than three splits, whereas three splits gave higher yield than five splits with lower water applications.  相似文献   

17.
    
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

18.
    
Environmental crises, land degradation, and frequent crop failure threaten the livelihoods of millions of the populace in the semi-arid agroecosystems. Therefore, different combinations of annual crops with perennial fruit trees were assessed to restore the soil carbon, and enhance farm productivity and profitability in a semi-arid climate. The study hypothesized that the integration of perennial fruit trees with seasonal crops may enhance farm productivity, economic returns, and environmental sustainability. Integration of phalsa (Grewia asiatica) with mung bean (Vigna radiata) - potato (Solanum tuberosum) system recorded the highest system productivity (25.9 Mg/ha) followed by phalsa with cowpea (Vigna unguiculata) -mustard (Brassica juncea) systems (21.2 Mg/ha). However, Karonda (Carissa sp.) with mung bean - potato system recorded maximum net return (3529.1 US$/ha), and water use efficiency (33.0 kg/ha-mm). Concerning the benefit-cost (B:C) ratio, among the agroforestry systems, the karonda + cowpea - mustard system registered a maximum BC ratio (3.85). However, SOC density remained higher (9.10 Mg/ha) under the phalsa + cowpea - mustard and Moringa + mung bean - potato system (9.16 Mg/ha) over other systems. Similarly, phalsa + mung bean - potato system had the highest C sustainability index (27.6), carbon sequestration potential (0.6–0.67 Mg/ha/year), and water use efficiency (33.0 kg/ha-mm). Hence, the study suggested that the integration of short-duration leguminous and oilseeds with fruit trees offer a myriad of benefits and an efficient system for restoring the soil C without compromising the food and livelihood security of the rural populace in semiarid regions.  相似文献   

19.
方浩玲  程先富  秦丽 《生态学报》2024,44(4):1601-1612
定量估算植被净初级生产力(NPP)对预测陆地碳循环趋势具有重要意义,目前广泛应用于NPP估算的CASA模型其精度仍有待提高。在已有CASA模型优化的基础上,考虑最大光能利用率(LUEmax)的动态变化来改进CASA模型,对改进前后的模拟结果进行比较,并利用改进后的模型估算2001—2020年安徽省植被NPP。结论如下:(1)改进的CASA模型可应用于研究区的植被NPP估算,NPP模拟值与实测值之间的相关性达到显著水平(R2=0.736,P<0.01)。(2)改进后模拟的安徽省植被NPP在空间表达上能够呈现更多细节,时间上较改进前在生长季NPP值更高,非生长季值更低,拉大了NPP的年内变化。(3)2001—2020年安徽省植被NPP整体呈波动上升趋势,多年平均值为547.61 gC m-2 a-1,年均增长量达2.18 gC m-2 a-1,2016—2020年间NPP增长最快。年内NPP具有明显的季节差异,表现为夏季>秋季>春季>冬...  相似文献   

20.
鄂尔多斯高原砒砂岩区土壤贫瘠、水土流失强烈,土壤氮素养分也是该区域植被恢复重建的主要限制因子.该研究以3种乡土种芨芨草(Achnatherum splendens)、长柄扁桃(Amygdalus pedunculata)和沙棘(Hippo-phae rhamnoides)与2种外来种掌叶大黄(Rheum palmatu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号