首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A normalization step is widely exercised in life cycle assessment (LCA) studies in order to better understand the relative significance of impact category results. In the normalization stage, normalization references (NRs) are the characterized results of a reference system, typically a national or regional economy. Normalization is widely practiced in LCA‐based decision support and policy analysis (e.g., LCA cases in municipal solid waste treatment technologies, renewable energy technologies, and environmentally preferable purchasing programs, etc.). The compilation of NRs demands significant effort and time as well as an intimate knowledge of data availability and quality. Consequently only one set of published NRs is available for the United States, and has been adopted by various studies. In this study, the completeness of the previous NRs was evaluated and significant data gaps were identified. One of the reasons for the significant data gaps was that the toxic release inventory (TRI) data significantly underestimate the potential impact of toxic releases for some sectors. Also the previous NRs did not consider the soil emissions and nitrogen (N) and phosphorus (P) runoffs to water and chemical emissions to soils. Filling in these data gaps increased the magnitude of NRs for “human health cancer,” “human health noncancer,” “ecotoxicity,” and “eutrophication” significantly. Such significant changes can alter or even reverse the outcome of an LCA study. We applied the previous and updated NRs to conventional gasoline and corn ethanol LCAs. The results demonstrate that NRs play a decisive role in the interpretation of LCA results that use a normalization step.  相似文献   

2.
This work contributes to the development of a dynamic life cycle assessment (DLCA) methodology by providing a methodological framework to link a dynamic system modeling method with a time‐dependent impact assessment method. This three‐step methodology starts by modeling systems where flows are described by temporal distributions. Then, a temporally differentiated life cycle inventory (TDLCI) is calculated to present the environmental exchanges through time. Finally, time‐dependent characterization factors are applied to the TDLCI to evaluate climate‐change impacts through time. The implementation of this new framework is illustrated by comparing systems producing domestic hot water (DHW) over an 80‐year period. Electricity is used to heat water in the first system, whereas the second system uses a combination of solar energy and gas to heat an equivalent amount of DHW at the same temperature. This comparison shows that using a different temporal precision (i.e., monthly vs. annual) to describe process flows can reverse conclusions regarding which case has the best environmental performance. Results also show that considering the timing of greenhouse gas (GHG) emissions reduces the absolute values of carbon footprint in the short‐term when compared with results from the static life cycle assessment. This pragmatic framework for the implementation of time in DLCA studies is proposed to help in the development of the methodology. It is not yet a fully operational scheme, and efforts are still required before DLCA can become state of practice.  相似文献   

3.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

4.
Sustainability assessment standards are currently being developed for a range of building products. This activity has been stimulated through the considerable success of the U.S. Green Building Council's (USGBC) LEED? standard. Transparent life cycle–based standards can guide manufacturers to design products that have reduced environmental impact. The use of a sustainability standard can certify performance and avoid green washing. In this article we present a logical framework for designing a sustainability assessment standard through the creation of tables that award points in the standard to be consistent with life cycle information. Certain minimum principles of consistency are articulated. In the case that the life cycle impact assessment method maps the life cycle inventory to impact through a linear weighting, two design approaches—impact category and activity substitution—are constructed to be consistent with these principles. The approach is illustrated in a case study of a partial redesign of a carpet sustainability assessment standard (NSF/ANSI‐140).  相似文献   

5.
Goal, Scope, and Background The main goal of the study is a comprehensive life cycle assessment of kerosene produced in a refinery located in Thessaloniki (Greece) and used in a commercial jet aircraft. Methods The Eco-Indicator 95 weighting method is used for the purpose of this study. The Eco-Indicator is a method of aggregation (or, as described in ISO draft 14042, 'weighting through categories') that leads to a single score. In the Eco-indicator method, the weighing factor (We) applied to an environmental impact index (greenhouse effect, ozone depletion, etc.) stems from the 'main' damage caused by this environmental impact. Results and Discussion The dominant source of greenhouse gas emissions is from kerosene combustion in aircraft turbines during air transportation, which contributes 99.5% of the total CO2 emissions. The extraction and refinery process of crude oil contribute by around 0.22% to the GWP. This is a logical outcome considering that these processes are very energy intensive. Transportation of crude oil and kerosene have little or no contribution to this impact category. The main source of CFC-11 equivalent emissions is refining of crude oil. These emissions derive from emissions that result from electricity production that is used during the operation of the refinery. NOx emissions contribute the most to the acidification followed by SO2 emissions. The main source is the use process in a commercial jet aircraft, which contributes approximately 96.04% to the total equivalent emissions. The refinery process of crude oil contributes by 2.11% mainly by producing SO2 emissions. This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2. Transportation of crude oil by sea (0.76%) produces large amount of SO2 and NOx due to combustion of low quality liquid fuels (heavy fuel oil). High air emissions of NOx during kerosene combustion result in the high contribution of this subsystem to the eutrophication effect. Also, water emissions with high nitrous content during the refining and extraction of crude oil process have a big impact to the water eutrophication impact category. Conclusion The major environmental impact from the life cycle of kerosene is the acidification effect, followed by the greenhouse effect. The summer smog and eutrophication effect have much less severe effect. The main contributor is the combustion of kerosene to a commercial jet aircraft. Excluding the use phase, the refining process appears to be the most polluting process during kerosene's life cycle. This is due to the fact that the refining process is a very complicated energy intensive process that produces large amounts and variety of pollutant substances. Extraction and transportation of crude oil and kerosene equally contribute to the environmental impacts of the kerosene cycle, but at much lower level than the refining process. Recommendation and Perspective The study indicates a need for a more detailed analysis of the refining process which has a very high contribution to the total equivalent emissions of the acidification effect and to the total impact score of the system (excluding the combustion of kerosene). This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2.  相似文献   

6.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

7.
Life cycle assessment (LCA) was used to compare the current water supply planning in Mediterranean Spain, the so‐called AGUA Programme, with its predecessor, the Ebro river water transfer (ERWT). Whereas the ERWT was based on a single interbasin transfer, the AGUA Programme excludes new transfers and focuses instead on different types of resources, including seawater and brackish water desalination and wastewater reuse, among others. The study includes not only water supply but the whole anthropic cycle of water, from water abstraction to wastewater treatment. In addition to standard LCA impact categories, a specific impact category focusing on freshwater resources is included, which takes into account freshwater scarcity in the affected water catchments. In most impact categories the AGUA Programme obtains similar or even lower impact scores than ERWT. Concerning impacts on freshwater resources, the AGUA Programme obtains an impact score 49% lower than the ERWT. Although the current water planning appears to perform better in many impact categories than its predecessor, this study shows that water supply in Spanish Mediterranean regions is substantially increasing its energy intensity and that Mediterranean basins suffer a very high level of water stress due to increasing demand and limited resources.  相似文献   

8.
The impact assessment methods Eco‐Indicator 99 (H), Stepwise2006, and ReCiPe2008 (H) are compared with respect to the relative and absolute importance that they assign to the different mid‐point impact categories. The comparison is done by a common monetary valuation of the three endpoints that are common to the three methods: human well‐being, nature, and resources. Land use, global warming, and respiratory inorganic pollutants together make up between 86% and 97% of the overall impacts compared in all three methods. The overall monetarized impacts amount to 30%, 28%, and 165% of the gross domestic product (GDP), respectively. Resource depletion, land use, and global warming explain 99.5% of the positive deviation of ReCiPe2008, relative to the other two methods. The main causes for these differences are investigated and discussed, pointing to possibly questionable calculations and assumptions, for example, regarding the nonsubstitutability of resources and the very long relaxation time for transformed forestland in the relatively new ReCiPe2008 method, which leads us to recommend users to be cautious and critical when interpreting the results. Sensitivity analysis is made for other cultural perspectives and normalization references.  相似文献   

9.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

10.
The Clean Air Act in the United States identifies diesel‐powered motor vehicles, including transit buses, as significant sources of several criteria pollutants that contribute to ground‐level ozone formation or smog. The effects of air pollution in urban areas are often more significant due to congestion and can lead to respiratory and cardiovascular health impacts. Life cycle assessment (LCA) has been utilized in the literature to compare conventional gasoline‐powered passenger cars with various types of electric and hybrid‐powered alternatives, however, no similarly detailed studies exist for mass transit buses. LCA results from this study indicate that the use phase, consisting of diesel production/combustion for the conventional bus and electricity generation for the electric bus, dominates most impact categories; however, the effects of battery production are significant for global warming, carcinogens, ozone depletion, and eco‐toxicity. There is a clear connection between the mix of power‐generation technologies and the preference for the diesel or electric bus. With the existing U.S. average grid, there is a strong preference for the conventional diesel bus over the electric bus when considering global warming impacts alone. Policy makers must consider regional variations in the electricity grid prior to recommending the use of battery electric buses to reduce carbon dioxide (CO2) emissions. This study found that the electric bus was preferable in only eight states, including Washington and Oregon. Improvements in battery technology reduce the life cycle impacts from the electric bus, but the electricity grid makeup is the dominant variable.  相似文献   

11.
This article investigates how value choices in life cycle impact assessment can influence characterization factors (CFs) for human health (expressed as disability‐adjusted life years [DALYs]). The Cultural Theory is used to define sets of value choices in the calculation of CFs, reflecting the individualist, hierarchist, and egalitarian perspectives. CFs were calculated for interventions related to the following impact categories: water scarcity, tropospheric ozone formation, particulate matter formation, human toxicity, ionizing radiation, stratospheric ozone depletion, and climate change. With the Cultural Theory as a framework, we show that individualist, hierarchist, and egalitarian perspectives can lead to CFs that vary up to six orders of magnitude. For persistent substances, the choice in time horizon explains the differences among perspectives, whereas for nonpersistent substances, the choice in age weighting and discount rate of DALY and the type of effects or exposure routes account for differences in CFs. The calculated global impact varies by two orders of magnitude, depending on the perspective selected, and derives mainly from particulate matter formation and water scarcity for the individualist perspective and from climate change for the egalitarian perspective. Our results stress the importance of dealing with value choices in life cycle impact assessment and suggest further research for analyzing the practical consequences for life cycle assessment results.  相似文献   

12.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

13.
In view of recent studies of the historical development and current status of industrial symbiosis (IS), life cycle assessment (LCA) is proposed as a general framework for quantifying the environmental performance of by‐product exchange. Recent guidelines for LCA (International Reference Life Cycle Data System [ILCD] guidelines) are applied to answer the main research questions in the IS literature reviewed. A typology of five main research questions is proposed: (1) analysis, (2) improvement, and (3) expansion of existing systems; (4) design of new eco‐industrial parks, and (5) restructuring of circular economies. The LCA guidelines were found useful in framing the question and choosing an appropriate reference case for comparison. The selection of a correct reference case reduces the risk of overestimating the benefits of by‐product exchange. In the analysis of existing systems, environmentally extended input‐output analysis (EEIOA) can be used to streamline the analysis and provide an industry average baseline for comparison. However, when large‐scale changes are applied to the system, more sophisticated tools are necessary for assessment of the consequences, from market analysis to general equilibrium modeling and future scenario work. Such a rigorous application of systems analysis was not found in the current IS literature, but would benefit the field substantially, especially when the environmental impact of large‐scale economic changes is analyzed.  相似文献   

14.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

15.
Life cycle impact of emissions, energy requirements, and exergetic losses are calculated for a novel process for producing titanium dioxide nanoparticles from an ilmenite feedstock. The Altairnano hydrochloride process analyzed is tailored for the production of nanoscale particles, unlike established commercial processes. The life cycle energy requirements for the production of these particles is compared with that of traditional building materials on a per unit mass basis. The environmental impact assessment and energy analysis results both emphasize the use of nonrenewable fossil fuels in the upstream life cycle. Exergy analysis shows fuel losses to be secondary to material losses, particularly in the mining of ilmenite ore. These analyses are based on the same inventory data. The main contributions of this work are to provide life cycle inventory of a nanomanufacturing process and reveal potential insights from exergy analysis that are not available from other methods.  相似文献   

16.
Life cycle assessment (LCA) is a quantitative tool used to evaluate the environmental impacts of products or processes. With respect to buildings, LCA can be used to evaluate the environmental impacts of an entire building's life cycle. Currently LCA in the building area is used in a limited capacity, primarily to select building products. In order to determine the causality for the lack of whole‐building LCAs, focus groups with members of the architecture, engineering, and construction (AEC) communities were held. This article investigates the current level of knowledge of LCA in the AEC community and then discusses the benefits and barriers to the practice of LCA. In summary, the goal of the research was to identify why LCA is not used to its fullest potential in a whole‐building LCA. In an open forum and moderated setting, focus group participants were asked individually to self‐identify their experience with LCA, a brief education session on LCA was held, and then benefits and barriers to LCA were discussed. The focus group sessions were transcribed and systematically coded by social researchers in order to analyze the results. Hybrid flow and radar charts were developed. From the focus group results, the most important benefit to LCA was “provides information about environmental impacts.” The results did not identify a prominent barrier; however, building‐related metrics were ascertained to be one of the more crucial barriers. The benefits and barriers classified by this analysis will be utilized to develop a subsequent online survey to further understand the LCA and AEC community.  相似文献   

17.
Continuous population growth is causing increased water contamination. Uneven distribution of water resources and periodic droughts have forced governments to seek new water sources: reclaimed and desalinated water. Wastewater recovery is a tool for better management of the water resources that are diverted from the natural water cycle to the anthropic one. The main objective of this work is to assess the stages of operation of a Spanish Mediterranean wastewater treatment plant to identify the stages with the highest environmental impact, to establish the environmental loads associated with wastewater reuse, and to evaluate alternative final destinations for wastewater. Tertiary treatment does not represent a significant increment in the impact of the total treatment at the plant. The impact of reclaiming 1 cubic meter (m3) of wastewater represents 0.16 kilograms of carbon dioxide per cubic meter (kg CO2/m3), compared to 0.83 kg CO2/m3 associated with basic wastewater treatment (primary, secondary, and sludge treatment). From a comparison of the alternatives for wastewater final destination, we observe that replacing potable water means a freshwater savings of 1.1 m3, whereas replacing desalinated water means important energy savings, reflected in all of the indicators. To ensure the availability of potable water to all of the population—especially in areas where water is scarce—governments should promote reusing wastewater under safe conditions as much as possible.  相似文献   

18.

Background and Objective

. Values in the known weighting methods in Life Cycle Assessment are mostly founded by the societal systems of developed countries. What source of weights and which weighting methods are reliable for a big developing country like China? The purpose of this paper is to find a possible weighting method and available data that will work well for LCA practices conducted in China. Since government policies and decisions play a leading role in the process of environmental protection in developing countries, the weights derived from political statements may be a consensus by representatives of the public.

Methods

'Distance-to-political target' principle is used in this paper to derive weights of five problem-oriented impact categories. The critical policy targets are deduced from the environmental policies issued in the period of the Ninth Five-year (1996-2000) and the Tenth Five-year (2001-2005) Plan for the Development of National Economy and Society of China. Policy targets on two five-year periods are presented and analyzed. Weights are determined by the quotient between the reference levels and target levels of a certain impact category.

Results and Discussion

Since the Tenth Five-year Plan put forward the overall objective to reduce the level of regional pollution by 2005, the weights for AP, EP and POCP for 2000-2005 are more than 1. By comparison between the Ninth Five-year and Tenth Five-year period, the results show that the weights obtained in this paper effectively represent Chinese political environmental priorities in different periods. For the weights derived from China's political targets for the overall period 1995-2005, the rank order of relative importance is ODP>AP>POCP>EP>GWP. They are recommended to the potential users for the broader disparity among the five categories. By comparison with the weights presented by the widespread EDIP method, the result shows that there's a big difference in the relative importance of ozone depletion and global warming.

-

In conclusion, the weighting factors and rank order of impact categories determined in this study represent the characteristics of the big developing country. The derived weighting set can be helpful to LCA practices of products within the industrial systems of China.
  相似文献   

19.
The application of life cycle assessment (LCA) in a policy context highlights the need for a “consequential” LCA (CLCA), which differs from an “attributional” LCA (ALCA). Although CLCA offers some advantages over ALCA, such as a capacity to account for emissions resulting from both substitution and price effects, it entails additional assumptions and cost and may yield estimates that are more uncertain (e.g., estimates of impact of biofuel policies on greenhouse gas [GHG] emissions). We illustrate how a CLCA that relies on simple partial equilibrium models could provide important insights on the direction and magnitude of price effects while limiting the complexity of CLCA. We describe how such a CLCA, when applied early in the policy life cycle, could help identify policy formulations that reduce the magnitude of adverse price effects relative to the beneficial substitution effect on emissions because—as the experience with biofuel regulations indicates—regulating price effects is costly and controversial. We conclude that the salient contribution of CLCA in the policy process might lie in warning policy makers about the vulnerabilities in a policy with regard to environmental impact and to help modify potentially counterproductive formulations rather than in deriving the precise estimates for uncertain variables, such as the life cycle GHG intensity of product or average indirect emissions.  相似文献   

20.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the "washing machine effect" by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the "inverse washing machine effect" with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号