首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
An increasing number of elements from the periodic table are being used in a growing number of products, enabling new material and product functionalities. Materials of high importance and high supply risks are usually referred to as critical materials. Many materials that are often considered critical are used in ways leading to their dissipative loss along the product life cycle. So far, the issue of material dissipation has been dealt with mainly on a rather aggregated level. Detailed knowledge on the occurrence and amount of dissipative losses in the life cycle of specific products is only scarcely available. Addressing this, a substance flow analysis of different critical metals along the life cycle of selected products is presented in this article. With regard to products used in Germany, the flows of indium and gallium used in copper‐indium‐gallium‐selenide (CIGS) photovoltaic cells, germanium used in polymerization catalysts, and yttrium used in thermal barrier coatings (TBCs) have been analyzed. The results comprise detailed knowledge about the life cycle stages in which dissipative losses occur and about the receiving media. In all case studies, a complete or almost complete dissipative loss can be observed, mainly to landfills and other material flows. In all case studies, material production can be identified as hotspots for dissipative losses. In two case studies fabrication and manufacturing (F&M for CIGS and TBCs) and in one case study end of life (polymerization catalysts) can be identified as further hotspots for dissipative losses. In addition, actions for reducing dissipation along the life cycle are discussed, targeting aspects such as the recovery of critical metals as by‐products, efficiency in F&M processes, and lack of recycling processes. Lack of economic incentives to apply more‐efficient technologies and processes already available is a key aspect in this regard.  相似文献   

2.
    
Yttrium tends to occur in the same ore deposits as the lanthanides and exhibits similar chemical properties as rare earth elements. Yttrium sources are typically concentrated in China, and there are concerns about supply security. Yttrium is used in small, but essential, quantities in a variety of advanced industrial sectors, for example, in phosphors, advanced ceramics, optical glasses, and batteries. In terms of resource security, it is important to verify the domestic yttrium consumption trends. In order to characterize the domestic yttrium consumption trends in Japan, we tracked the historical yttrium consumption patterns from 2001 to 2011 by applying the bottom‐up approach and illustrated the recent domestic yttrium flow by using a substance flow analysis. The results showed that the total yttrium consumption has remained steady over 10 years, from 1,124 tonnes (t) in 2001 to 967 t in 2011. Recent consumption in 2011 was driven primarily by the use of yttrium in fluorescent lamps (462 t), nickel metal hydride batteries (185 t), and optic glasses (149 t).  相似文献   

3.
The present article investigates to what extent and level of success urban mining—the recovery of resources from anthropogenic stock—has been applied in the past during shortages of primary resources. As a case study, the Austrian economy during World War I—when raw materials indeed had to be substituted from secondary sources—is analyzed here. By means of material flow analysis, the management of copper, an important and relatively scarce metal that is difficult to substitute, is examined. The combination of increased demand for copper (for ammunition) and constraints on supply from sources other than the domestic anthroposphere highlights the importance of planning for and surveying urban mining activities. The results also indicate limitations to extracting a large share of copper from the anthroposphere, even in the face of a critical shortage. Although extreme measures, such as confiscation, were taken, only 1.7 kilograms of copper per capita (kg Cu/cap), amounting to perhaps as little as 10% of the anthropogenic stock, could be made available through the end of the war.  相似文献   

4.
    
Phosphorus (P) is a key factor in aquatic eutrophication, and P contamination has become a common issue worldwide. Many developing countries, including China, have made great efforts in the anti‐P contamination battle. In this article we mainly discuss the P flow in Wuwei, a typical county in China with insufficient wastewater treatment, using the method of static substance flow analysis. We show that characterizing P metabolic pathways and flows at the county level can provide useful information about P pollution. Through complex calculations, we found that Wuwei County released 3,552 metric tons (t) of P into the local aquatic environment in 2008 and that its P load (3.35 kilograms P per capita per year [kg P/cap/yr] or 19.43 kilograms P per hectare per year [kg‐P/ha/yr]) was greater than both the adjoining counties’ and Chaohu City's average levels combined. The agricultural subsystem discharged the largest quantity of P (2,572 t) and had a relatively low production conversion efficiency (32%) and P waste recycling rate (36%). The rural residential and small‐scale livestock breeding systems also accounted for substantial portions of P discharge. Anti‐P contamination efforts should consequently focus on those three subsystems. Based on the results of this case study, we also discuss the feasibility of potential efforts to reduce P contamination.  相似文献   

5.
Human activity has quadrupled the mobilization of phosphorus (P), a nonrenewable resource that is not fully recycled biologically or industrially. P is accumulated in both water and solid waste due to fertilizer application and industrial, agricultural, and animal P consumption. This paper characterizes the industrial flows, which, although smaller than the agricultural and animal flows, are an important phosphorus source contributing to the pollution of surface waters. We present the quantification of the network of flows as constrained by mass balances of the global annual metabolism of phosphorus, based on global consumption for 2004, all of which eventually ends up as waste and in the soil and water systems. We find that on a yearly basis, 18.9 million metric tons (MMT) of P is produced, of which close to 75% goes to fertilizer and the rest to industrial and others uses. Phosphoric acid is the precursor for many of the intermediate and end uses of phosphate compounds described in this study and accounts for almost 80% of all P consumed. Eventually, all of the P goes to waste: 18.5 MMT ends up in the soil as solid waste, and 1.32 MMT is emissions to air and water. Besides quantifying P flows through our economy, we also consider some possible measures that could be taken to increase the degree of recovery and optimization of this resource and others that are closely related, such as the recovery of sulfur from gypsum and wastewater (sludge), and fluorine from wet phosphoric acid production.  相似文献   

6.
    
Several authors have highlighted the potential risks of nanoparticles (NPs). Still, little is known about the magnitude of emissions of NPs from society. Here, the method of explorative particle flow analysis (PFA), a modification of the more well‐known substance flow analysis (SFA), is suggested. In explorative PFA, particle number instead of mass is used as flow and stock metric and explorative scenarios are used to account for potential technology diffusion and, consequently, potentially higher emissions. The method has been applied in a case study of the use phase of titanium dioxide (TiO2) NPs in paint, sunscreen and self‐cleaning cement. The results indicate that the current largest emissions of TiO2 NPs originate from the use of sunscreen. One scenario implies that, in the future, the largest flows and stocks of TiO2 NPs could be related to self‐cleaning cement. Gaps in current knowledge are identified and suggestions for future research are given.  相似文献   

7.
Material flows of the economic cycle can contain toxic substances, which enter the economy as impurities in raw materials or are intentionally added as minor or even main constituents during the manufacture of industrial or consumer goods. Cadmium, predominantly associated with zinc minerals, is a by-product of the primary zinc production. Cadmium is generated when zinc is extracted from zinc ores and concentrates, an intermediate product resulting from flotation processing after the zinc ore has been mined and milled. Information on the amount of cadmium generated from zinc extraction is rarely published. In this article, we assess generation and fate of cadmium accumulating worldwide in the production of primary zinc from ores and concentrates. Model calculations for the beginning of the 21st century show that annually about 30,000 tonnes of cadmium were generated, but only approximately 16,000 tonnes were converted to primary cadmium metal, key material for the production of other cadmium compounds (e.g., cadmium oxide), and cadmium-containing goods (e.g., nickel−cadmium batteries). Hence, about 14,000 tonnes of cadmium must have been transferred somewhere else. The fate of about 5,500 tonnes can be plausibly explained, but it is difficult to determine what happens to the rest.  相似文献   

8.
    
Copper (Cu) is an essential but supply‐restricted resource in China. Characterization of in‐use stocks can provide useful instruction for the future recycling of copper. This article attempts to estimate copper in‐use stocks in a Chinese city. To this purpose, an extensive bottom‐up estimate of copper stocks in use in Nanjing in the year 2009 was conducted. The results are a total stock estimate of 295 gigagrams (Gg) of copper or 46.9 kilograms (kg) of copper per capita for 2009. Infrastructure, equipment, and buildings contain 42.0%, 26.1%, and 28.1% of the total stock, respectively, indicating that these three categories are principal potential reservoirs of a secondary copper resource. The copper in transportation amounts to only about 3.7% of the total amount. The per capita stock was compared with similar studies carried out in other regions of the world, and the results show that the Nanjing level is significantly lower than developed countries. On the whole, our results show that electric power transmission and distribution systems, buildings, household durables, and industrial equipment are the four largest potential reservoirs of copper scrap.  相似文献   

9.
    
Changes in food consumption and related processes have a significant impact on the flow of nitrogen in the environment. This study identifies both flows within the system and emissions to the hydrosphere and atmosphere. A case study of an average inhabitant of the city of Linköping, Sweden, covers the years 1870, 1900, 1950, and 2000 and includes changes in food consumption and processing, agricultural production, and organic waste handling practices. Emissions to the hydrosphere from organic waste handling increased from 0.57 kilograms of nitrogen per capita per year (kg N/cap per year) to 3.1 kg N/cap per year, whereas the total flow of nitrogen to waste deposits grew from a negligible amount to 1.7 kg N/cap per year. The largest flow of nitrogen during the entire period came from fodder. The input of chemical fertilizer rose gradually to a high level of 15 kg N/cap per year in the year 2000. The total load per capita disposed of to the environment decreased during these 130 years by about 30%.  相似文献   

10.
Human activities have significantly intensified natural phosphorus cycles, which has resulted in some serious environmental problems that modern societies face today. This article attempts to quantify the global phosphorus flows associated with present day mining, farming, animal feeding, and household consumption. Various physical characteristics of the related phosphorus fluxes as well as their environmental impacts in different economies, including the United States, European countries, and China, are examined. Particular attention is given to the global phosphorus budget in cropland and the movement and transformation of phosphorus in soil, because these phosphorus flows, in association with the farming sector, constitute major fluxes that dominate the anthropogenic phosphorus cycle. The results show that the global input of phosphorus to cropland, in both inorganic and organic forms from various sources, cannot compensate for the removal in harvests and in the losses by erosion and runoff. A net loss of phosphorus from the world's cropland is estimated at about 10.5 million metric tons (MMT) phosphorus each year, nearly one half of the phosphorus extracted yearly.  相似文献   

11.
    
Recycling rates of aluminum are defined in different (sometimes inconsistent) ways and poorly quantified. To address this situation, the definitions and calculation methods of four groups of indicators are specified for the United States: (1) indicators used to measure recycling efficiencies of old aluminum scrap at the end‐of‐life (EOL) stage, including EOL collection rate (CR), EOL processing rate, EOL recycling rate, and EOL domestic recycling rate; (2) indicators used to compare generation or use of new with old scrap, including new to old scrap ratio, new scrap ratio (NSR), and old scrap ratio; (3) indicators used to compare production or use of primary aluminum with secondary aluminum, including four recycling input rates (RIRs); and (4) indicators used to track the sinks of aluminum metal in the U.S. anthroposphere. I find that the central estimate of EOL CR varies between 38% and 65% in the United States from 1980 to 2009 and shares a relatively similar historical trend with the primary aluminum price. The RIR is shown to be significantly reduced if excluding secondary aluminum produced from new scrap resulting from the relatively high NSR. In 2003, a time when approximately 73% of all of the aluminum produced globally since 1950 was considered to still be “in service,” approximately 68% to 69% of all metallic aluminum that had entered the U.S. anthroposphere since 1900 was still in use: 67% in domestic in‐use stock and 1% to 2% exported as scrap. Only 6% to 7% was definitely lost to the environment, although the destination of 25% of the aluminum was unknown. It was either exported as EOL products, was currently hibernating, or was lost during collection.  相似文献   

12.
    
Fluorine is an essential element to human health and to the chemical industry. In spite of our dependence on fluorine and fluorine compounds, we have yet to learn to use them wisely. Our fluorine history, which spans about a hundred years, has had negative effects such as hydrofluoric acid pollution caused by aluminum smelters and ozone depletion due to chlorofluorocarbon (CFC) emissions. More recent concerns center on greenhouse effects from CFCs, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). In this article we note also that fluorine is a nonrenewable resource that is nonsubstitutable for many purposes. This article tracks fluorine from sources through conversion processes to end uses, most of which are dissipative. We present a stock‐flow model of the fluorine system. Based on this model we consider some possible measures that could be taken to increase the degree of recovery. To mention one example, a large percentage of the world demand for fluorspar could be supplied by the phosphate rock (fertilizer) industry, which currently dissipates a great deal of recoverable fluorine in waste phospho‐gypsum.  相似文献   

13.
    
A method for quantitative evaluation of data quality in regional material flow analysis (MFA) is presented. The principal idea is that data quality is a multidimensional problem that cannot be judged by individual characteristics such as the data source, given that data from official statistics may not be per se of good quality and expert estimations may not be per se of bad quality, respectively. It appears that MFA data are never totally accurate and may have certain defects that impair the quality of the data in more than one dimension. The concept of MFA information defects is introduced, and these information defects are mathematically formalized as functions of data characteristics. They are quantified on a scale from 0 (no information defect) to 1 (maximum information defect). The proposed method is illustrated in a case study on palladium flows in Austria. A quantitative evaluation of data quality provides opportunities for understanding and assessing MFA results, their a priori information basis, their reliability in decision making, and data uncertainties. It is a formal step toward better reproducibility and more transparency in MFA.  相似文献   

14.
The 20th century was a time of rapidly escalating use of lead (Pb). As a consequence, the standing stock of lead is now substantial. By linking lead extraction and use to estimates of product lifetimes and recycling, we have derived an estimate of the standing stock of lead throughout the century by top-down techniques. We find that the stock of in-use lead is almost entirely made up of batteries (68%), lead sheet (10%), and lead pipe (10%). Globally, about 200 teragrams (Tg) Pb was mined in the 20th century, and about 25 Tg Pb now makes up the in-use stock, so some 87% has been lost over time. Nonetheless, about 11% of all lead entering use was added to in-use stock in 2000, so the stock continues to increase each year. Currently, most of the stock is in Europe (32%), North America (32%), and Asia (24%). On a per capita basis, the global stock is about 5.6 kilograms (kg) Pb, and regional in-use stock ranges from 2.0 kg Pb (Africa) to 19.7 kg Pb (Europe). From a sustainability perspective, we estimate that the global lead resource is around 415 Tg Pb. Were the entire world to receive the services of lead at the level of the developed countries, some 130 Tg Pb would be needed, so there do not appear to be significant long-term limitations to the lead supply.  相似文献   

15.
    
Concentrations of pollutants vary in wastes from different sources. However, existing waste input‐output (WIO) models do not take these differing concentrations into account. This article proposes a new category of model, which we are calling a waste input‐output model at the substance level (WIOS model). The WIOS model considers variations in waste composition. These variations potentially affect the life cycle inventory of the waste treatment stage. The proposed model is expected to produce more accurate results than existing WIO models that do not consider variations in the composition of wastes. In addition, the proposed model provides a method to trace substances undergoing waste treatment. In this article, use of the WIOS model is illustrated by simulating the overall environmental loads of total organic carbon from wastewater treatment at a facility in Germany. The results show that variations in the composition of wastes entering treatment significantly affect the modeled estimates of total environmental loads caused by wastewater treatment. In addition, the results of the proposed model are different from results given by existing hybrid input‐output WIO models that do not consider variations in the composition of wastewater as it undergoes treatment.  相似文献   

16.
    
Future phosphorus (P) scarcity and eutrophication risks demonstrate the need for systems‐wide P assessments. Despite the projected drastic increase in world‐wide fish production, P studies have yet to include the aquaculture and fisheries sectors, thus eliminating the possibility of assessing their relative importance and identifying opportunities for recycling. Using Norway as a case, this study presents the results of a current‐status integrated fisheries, aquaculture, and agriculture P flow analysis and identifies current sectoral linkages as well as potential cross‐sectoral synergies where P use can be optimized. A scenario was developed to shed light on how the projected 2050 fivefold Norwegian aquaculture growth will likely affect P demand and secondary P resources. The results indicate that, contrary to most other countries where agriculture dominates, in Norway, aquaculture and agriculture drive P consumption and losses at similar levels and secondary P recycling, both intra‐ and cross‐sectorally, is far from optimized. The scenario results suggest that the projected aquaculture growth will make the Norwegian aquaculture sector approximately 4 times as P intensive as compared to agriculture, in terms of both imported P and losses. This will create not only future environmental challenges, but also opportunities for cross‐sectoral P recycling that could help alleviate the mineral P demands of agriculture. Near‐term policy measures should focus on utilizing domestic fish scrap for animal husbandry and/or fish feed production. Long‐term efforts should focus on improving technology and environmental systems analysis methods to enable P recovery from aquaculture production and manure distribution in animal husbandry.  相似文献   

17.
    
Modern human activities greatly disturb substance flows in nature and senselessly discard massive amounts of precious resources to natural waste reservoirs; phosphorus (P) is a good example of this. In this article, substance flow analysis is employed to quantify and explore the temporal evolution of China's P consumption in main metabolic nodes from 1984 to 2008, and then the environmental implications for P flows into both surface waters and natural soil are investigated. Results show that the metabolic nodes of human life and animal husbandry have demanded increasingly more P inputs, while disseminating more and more P wastes, with the waste recycling ratios of these processes dropping, respectively, from 65.9% and 66.1% in 1984 to 50.7% and 40.6% by 2008. These change traits were closely related to national polices including the Household Contract Responsibility System and the Shopping Basket Program, as well as the policy vacuum existing between China's agricultural and environmental administration departments. To achieve high crop yield, increasingly more inorganic P fertilizers have been utilized in China, but their use efficiency has decreased by 46.3%. From 2003 to 2008, the total P load into surface waters was stabilized at about 900.0 kilotons (kt), while the total P load into natural soil increased by more than 3.8 times to 3,131.3 kt P in 2008. City life and the intensive breeding of crops are identified as the main targets for further pollution control and nutrient recycling in China. Some suggestions for achieving environmentally sound practices and resource sustainability in China are proposed at the end of this article.  相似文献   

18.
    
Alloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input‐output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end‐of‐life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality‐based scrap recycling for efficient management of alloying elements.  相似文献   

19.
This work introduces a new approach to integrating the discharges of industrial processes with macroscopic watershed systems. The key concept is that environmental quality models (such as material flow analysis) can be inverted and included in an optimization formulation that seeks to determine the maximum allowable target for the process discharges while meeting the overall environmental requirements of the watershed. Because of its holistic nature, this approach simultaneously considers the effects of the inputs and outputs to the watershed (e.g., agricultural, residential, wastewater treatment plants, industrial, and so on) and the various physical, chemical, and biological phenomena occurring within the watershed. An optimization formulation is developed to systematically represent the reverse problem formulation. To illustrate the effectiveness of this approach, a case study is solved to manage phosphorus in Bahr El‐Baqar drainage system leading to Lake Manzala in Egypt. The key environmental and economic aspects are addressed and used to screen plant location and discharges.  相似文献   

20.
    
Large stocks of metals have accumulated in the urban technosphere (i.e., the physical environment altered by human activity). To minimize health and environmental risks, attempts were begun in the 1980s to phase out the use of cadmium (Cd), lead (Pb), and mercury (Hg). To study the effect of this attempt, we conducted substance flow analyses (SFAs) in Stockholm, Sweden, in 1995 and in 2002–2003, which allow a comparison of the results over time.
The SFAs showed a reduction in the stocks of Cd and Hg by approximately 25% to 30% between 1995 and 2002–2003. For Pb, the stock development was more uncertain. Cd and Hg inflow was substantially reduced during this period, but Pb inflow increased. Amounts of Cd and Pb in waste were still large, whereas Hg flows in waste were decreasing. Furthermore, although emissions of Pb decreased, Cd and Hg emissions were in the same range as in 1995.
The application of SFAs has provided unique data on the accumulation of metals in the Stockholm technosphere, thus serving as a valuable indicator of how the phasing out progresses. The changes can be related to regulations, initiatives by industries and organizations, and the proactive attitude of the local environmental authorities and of the water company.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号