首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban metabolism (UM) is a way of characterizing the flows of materials and energy through and within cities. It is based on a comparison of cities to living organisms, which, like cities, require energy and matter flows to function and which generate waste during the mobilization of matter. Over the last 40 years, this approach has been applied in numerous case studies. Because of the data‐intensive nature of a UM study, however, this methodology still faces some challenges. One such challenge is that most UM studies only present macroscopic results on either energy, water, or material flows at a particular point in time. This snapshot of a particular flow does not allow the tracing back of the flow's evolution caused by a city's temporal dynamics. To better understand the temporal dynamics of a UM, this article first presents the UM for Brussels Capital Region for 2010, including energy, water, material, and pollution flows. A temporal evaluation of these metabolic flows, as well as some urban characteristics starting from the seminal study of Duvigneaud and Denayer‐De Smet in the early 1970s to 2010, is then carried out. This evolution shows that Brussels electricity, natural gas, and water use increased by 160%, 400%, and 15%, respectively, over a period of 40 years, whereas population only increased by 1%. The effect of some urban characteristics on the UM is then briefly explored. Finally, this article succinctly compares the evolution of Brussels’ UM with those of Paris, Vienna, Barcelona, and Hong Kong and concludes by describing further research pathways that enable a better understanding of the complex functioniong of UM over time.  相似文献   

2.
This synthesis article presents an overview of an urban metabolism (UM) approach using mixed methods and multiple sources of data for Los Angeles, California. We examine electric energy use in buildings and greenhouse gas emissions from electricity, and calculate embedded infrastructure life cycle effects, water use and solid waste streams in an attempt to better understand the urban flows and sinks in the Los Angeles region (city and county). This quantification is being conducted to help policy‐makers better target energy conservation and efficiency programs, pinpoint best locations for distributed solar generation, and support the development of policies for greater environmental sustainability. It provides a framework to which many more UM flows can be added to create greater understanding of the study area's resource dependencies. Going forward, together with policy analysis, UM can help untangle the complex intertwined resource dependencies that cities must address as they attempt to increase their environmental sustainability.  相似文献   

3.
The Changing Metabolism of Cities   总被引:7,自引:0,他引:7  
Data from urban metabolism studies from eight metropolitan regions across five continents, conducted in various years since 1965, are assembled in consistent units and compared. Together with studies of water, materials, energy, and nutrient flows from additional cities, the comparison provides insights into the changing metabolism of cities. Most cities studied exhibit increasing per capita metabolism with respect to water, wastewater, energy, and materials, although one city showed increasing efficiency for energy and water over the 1990s. Changes in solid waste streams and air pollutant emissions are mixed.
The review also identifies metabolic processes that threaten the sustainability of cities. These include altered ground water levels, exhaustion of local materials, accumulation of toxic materials, summer heat islands, and irregular accumulation of nutrients. Beyond concerns over the sheer magnitudes of resource flows into cities, an understanding of these accumulation or storage processes in the urban metabolism is critical. Growth , which is inherently part of metabolism, causes changes in water stored in urban aquifers, materials in the building stock, heat stored in the urban canopy layer, and potentially useful nutrients in urban waste dumps.
Practical reasons exist for understanding urban metabolism. The vitality of cities depends on spatial relationships with surrounding hinterlands and global resource webs. Increasing metabolism implies greater loss of farmland, forests, and species diversity; plus more traffic and more pollution. Urban policy makers should consider to what extent their nearest resources are close to exhaustion and, if necessary, appropriate strategies to slow exploitation. It is apparent from this review that metabolism data have been established for only a few cities worldwide, and interpretation issues exist due to lack of common conventions. Further urban metabolism studies are required.  相似文献   

4.
Sustainable urban resource management depends essentially on a sound understanding of a city's resource flows. One established method for analyzing the urban metabolism (UM) is the Eurostat material flow analysis (MFA). However, for a comprehensive assessment of the UM, this method has its limitations. It does not account for all relevant resource flows, such as locally sourced resources, and it does not differentiate between flows that are associated with the city's resource consumption and resources that only pass through the city. This research sought to gain insights into the UM of Amsterdam by performing an MFA employing the Eurostat method. Modifications to that method were made to enhance its performance for comprehensive UM analyses. A case study of Amsterdam for the year 2012 was conducted and the results of the Eurostat and the modified Eurostat method were compared. The results show that Amsterdam's metabolism is dominated by water flows and by port‐related throughput of fossil fuels. The modified Eurostat method provides a deeper understanding of the UM than the urban Eurostat MFA attributed to three major benefits of the proposed modifications. First, the MFA presents a more complete image of the flows in the UM. Second, the modified resource classification presents findings in more detail. Third, explicating throughput flows yields a much‐improved insight into the nature of a city's imports, exports, and stock. Overall, these advancements provide a deeper understanding of the UM and make the MFA method more useful for sustainable urban resource management.  相似文献   

5.
Urban metabolism accounts of total annual energy, water, and other resource flows are increasingly available for a variety of world cities. For local decision makers, however, it may be important to understand the variations of resource consumption within the city. Given the difficulty of gathering suburban resource consumption data for many cities, this article investigates the potential of statistical downscaling methods to estimate local resource consumption using socioeconomic or other data sources. We evaluate six classes of downscaling methods: ratio‐based normalization; linear regression (both internally and externally calibrated); linear regression with spatial autocorrelation; multilevel linear regression; and a basic Bayesian analysis. The methods were applied to domestic energy consumption in London, UK, and our results show that it is possible to downscale aggregate resource consumption to smaller geographies with an average absolute prediction error of around 20%; however, performance varies widely by method, geography size, and fuel type. We also show how mapping these results can quickly identify districts with noteworthy resource consumption profiles. Further work should explore the design of local data collection strategies to enhance these methods and apply the techniques to other urban resources such as water or waste.  相似文献   

6.
Urban systems are important consumers of resources and producers of wastes derived from the lifestyles and daily needs of their citizens. The quantification of environmental impacts arising from urban metabolism (UM) plays a key role in the design of more sustainable cities and in the development of decision‐making strategies into more effective urban policies. This article combines UM and lifecycle assessment methodology to quantify mass and energy flows within the city limits and derived urban environmental pressures, thus prioritizing the environmental perspective of sustainability. This methodology is applied to the two very different Spanish cities of Bilbao and Seville. The results acquired in this study identify the consumption of construction materials, electricity, fossil fuels, and food and beverages as environmental hotspots. The results are primarily affected by differences in the climate (extreme conditions), which mainly affect the consumption of fossil fuels, and differences in purchasing power, which mainly influence the intake of foodstuffs. Further research should focus on data management and quality as well as on designing more efficient cities (e.g., through the introduction of more energy‐efficient buildings, sustainable building materials, and public transport) in order to create improvements in their environmental profiles.  相似文献   

7.
In the fifty years since Abel Wolman first published an estimate of U.S. urban metabolism, the field of urban metabolism has begun to thrive, with cities outside the United States being much of the focus. As cities attempt to meet local and international sustainability goals, it is time to revisit the metabolism of cities within the United States. Using existing empirical databases for material flows (the Freight Analysis Framework) and a published database on urban water flux, we provide a revised estimate of urban metabolism for the typical U.S. city. We estimate median values of metabolism for a city of one million people, considering water resources, food, fuel, and construction materials. Food consumption and waste production increased substantially to 3,800 metric tons per day and 4,900 metric tons per day, respectively. To facilitate a second generation of urban metabolism, we extend traditional analyses to include the embedded energy required to facilitate material consumption with important implications in determining sustainable urban metabolism. We estimate that a city of one million people requires nearly 4,000 gigajoules of primary energy per day to facilitate its metabolism. Our results show high heterogeneity of urban metabolism across the United States. As a result of the study, we conclude that there is a distinct need to promote policies at the regional or city scale that collect data for urban metabolism studies. Urban metabolism is an important educational and decision‐making tool that, with an increase in data availability, can provide important information for cities and their sustainability goals.  相似文献   

8.
Assessments of urban metabolism (UM) are well situated to identify the scale, components, and direction of urban and energy flows in cities and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure, such as transport, space conditioning, and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with “biomass”) and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting of the environmental footprint from urban food demand (“foodprint”) is necessary. This article reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint, and ecological footprint and situates it relative to other significant environmental drivers (transport, energy, and so on) The foodprint was typically the third largest source of mass flows (average is 0.8 tonnes per capita per annum) and carbon footprint (average is 2.1 tonnes carbon dioxide equivalents per capita per annum) in the reviewed cities, whereas it was generally the largest driver of urban ecological footprints (average is 1.2 global hectares per capita per annum), with large deviations based on wealth, culture, and urban form. Meat and dairy are the primary drivers of both global warming and ecological footprint impacts, with little relationship between their consumption and city wealth. The foodprint is primarily linear in form, producing significant organic exhaust from the urban system that has a strong, positive correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, cities can still implement design and policy interventions, such as improved nutrient recycling and food waste avoidance, to redress the foodprint.  相似文献   

9.
Using the city of Toronto as a case study, this article examines impacts of energy stocks and flexible demand in the urban metabolism on the resilience of the city, including discussion of directions for further study of the resiliency of the urban metabolism. An important element developed is the nominal residence time of the energy stocks. This value defines how long an energy stock lasts under typical patterns of energy use. The findings suggest that the residence times of many sources of energy overcome vulnerability when energy supply shocks last on the order of hours or a few days, but that the measure is limited to assessing only certain types of commonly used energy sources in aggregate terms. Discussion is included on the uncertainty of this measure and on the metabolic and resiliency implications of new technologies intended to reduce energy use and improve sustainability of cities and the use of the urban metabolism as a means of comparison. The methodology employed highlights how waste energy could be used to increase the resiliency of the city's water supply, but also how the study of the urban metabolism would benefit from a more disaggregate form in the study of sustainable and resilient cities.  相似文献   

10.
Sustainable urbanization requires streamlining of resource management in urban systems which in turn requires understanding of urban metabolism (UM). Even though various methods have been applied for UM analysis, to date there is no standardized method for comprehensive accounting of material flows in urban systems. Moreover, the accounting of material flows is rarely implemented with a bottom‐up approach that can provide a thorough analysis of UM. This article presents the Urban Accounting Model (UAM) which aims to allow comprehensive accounting of urban material flows based on a bottom‐up approach. The model comprises two interlinked sub‐models. The first was developed by integrating a new physical input output table (PIOT) framework for urban systems into a three‐dimensional structure. The second comprises a set of physical accounts for systematic accounting of material flows of each economic sector in the system in order to support the compilation of the PIOTs. The functions of the UAM were explored through its application to two urban neighborhoods in the Stockholm Royal Seaport district. The application highlighted that the UAM can describe the physical interactions between the urban system and the environment or other socioeconomic systems, and capture the intersectoral flows within the system. Moreover, its accounts provide information that allow an in‐depth analysis of the metabolism of specific sectors. Overall, the UAM can function as a useful tool for UM analysis as it systematizes data collection and at the same time depicts the physical reality of the urban system.  相似文献   

11.
Shaping sustainable, equitable African cities requires strengthened investigations into the cities’ current resource flows, infrastructure systems, and future resource requirements. The field of urban metabolism (UM) offers multiple forms of analysis with which to map, analyse, and visualize urban resource profiles. Challenges in assessing UM in African cities include data scarcity at the city level, difficulty in tracking informal flows, lack of standardized methods, and the open nature of cities. However, such analyses are needed at the local level, given that city practitioners cannot rely purely on urban planning traditions of the global North or the typically broad studies about urban Africa, for supporting strategies toward sustainable urban development. This article aims to draw together the concepts of sustainable development and UM and explore their application in the African context. Further, the article estimated resource profiles for 120 African cities, including consumption of biomass, fossil fuels, electricity, construction materials, and water, as well as emissions of carbon dioxide. These resource profiles serve as a baseline from which to begin assessing the current and future resource intensity of these cities. It also provides insights into the cities’ relative resource impact, future consumption trends, and potential options for sustainability interventions.  相似文献   

12.
Urban Water Mass Balance Analysis   总被引:1,自引:0,他引:1  
Planning for “water‐sensitive” cities has become a priority for sustainable urban development in Australia. There has been little quantification of the term, however. Furthermore, the water balance of most cities is not well known. Following prolonged drought, there has also been a growing need to make Australian cities more water self‐reliant: to source water from within. This article formalizes a systematic mass‐balance framework to quantify all anthropogenic and natural flows into and out of the urban environment. Quantitative performance indicators are derived, including (1) degree of system centralization; (2) overall balance; potential of (3) rainfall, (4) stormwater, and (5) wastewater to offset current demand; and (6) water cycle rate. Using the method, we evaluate Sydney, Melbourne, South East Queensland and Perth using reported and modeled data. The approach makes visible large flows of water that have previously been unaccounted and ignored. It also highlights significant intercity variation. In 2004–2005, the cities varied 54% to 100% in their supply centralization, 257% to 397% in the ratio of rainfall and water use, 47% to 104% in their potential stormwater recycling potential, and 26% to 86% in wastewater recycling potential. The approach provides a practical, water‐focused application of the urban metabolism framework. It demonstrates how the principles of mass balance can help foster robust water accounting, monitoring, and management. More important, it contributes to the design and quantitative assessment of water‐sensitive cities of the future.  相似文献   

13.
城市生活垃圾代谢的研究进展   总被引:2,自引:0,他引:2  
城市代谢是导致城市发展、能量生产和废物排放的社会、经济和技术过程的总和。生活垃圾管理系统是一类典型的、具备社会、经济、自然要素的复杂系统,它不仅同管理体制、技术水平和居民素质有关,也贯穿生产、消费、流通、还原过程,更和水体、土壤、大气、生物、矿产等自然环境紧密联系。综述了近年来基于城市生态系统代谢思路,在生活垃圾碳、重金属、营养元素和能量的城市代谢等方面的研究进展,分析了未来该领域研究需重点关注的方向。生活垃圾在城市生态系统中的能量流动、物质循环、代谢效率等方面的研究,可为生活垃圾管理系统的评价、规划、工程、管理研究提供科学基础。  相似文献   

14.
Life cycle assessment (LCA) and urban metabolism (UM) are popular approaches for urban system environmental assessment. However, both approaches have challenges when used across spatial scales. LCA tends to decompose systemic information into micro‐level functional units that mask complexity and purpose, whereas UM typically equates aggregated material and energy flows with impacts and is not ideal for revealing the mechanisms or alternatives available to reduce systemic environmental risks. This study explores the value of integrating UM with LCA, using vehicle transportation in the Phoenix metropolitan area as an illustrative case study. Where other studies have focused on the use of LCA providing upstream supply‐chain impacts for UM, we assert that the broader value of the integrated approach is in (1) the ability to cross scales (from micro to macro) in environmental assessment and (2) establishing an analysis that captures function and complexity in urban systems. The results for Phoenix show the complexity in resource supply chains and critical infrastructure services, how impacts accrue well beyond geopolitical boundaries where activities occur, and potential system vulnerabilities.  相似文献   

15.
Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net zero in a single area, such as water, whereas two bases, including Fort Carson, Colorado, target net zero in all three areas. We investigated sustainability strategies that appear when multiple areas (energy, water, and waste) are integrated. A system dynamics model is used to simulate urban metabolism through Fort Carson's energy, water, and waste systems. Integrated scenarios reduce environmental impact up to 46% from the 2010 baseline, whereas single‐dimension scenarios (energy‐only, water‐only, and waste‐only) reduce impact, at most, 20%. Energy conserving technologies offer mutual gains, reducing annual energy use 18% and water use 15%. Renewable energy sources present trade‐offs: Concentrating solar power could supply 11% of energy demand, but increase water demand 2%. Waste to energy could supply 40% of energy demand and reduce waste to landfill >80%, but increase water demand between 1% and 22% depending on cooling system and waste tonnage. Outcomes depend on how the Fort Carson system is defined, because some components represent multiple net zero areas (food represents waste and energy), and some actions require embodied resources (energy generation potentially requires water and off‐base feedstock). We suggest that integrating multiple net zero goals can lead to lower environmental impact for military bases.  相似文献   

16.
食物源CNP的城市代谢特征——以厦门市为例   总被引:2,自引:0,他引:2  
王进  吝涛 《生态学报》2014,34(21):6366-6378
基于元素流分析原理,将食物源碳氮磷3种元素在城市系统中的代谢特征进行耦合分析,追踪以"食物消费"、"废物处置"、"人体代谢"为主要环节的食物碳氮磷代谢过程,发掘其中共同的代谢环节,明晰3种元素代谢路径、代谢通量及其影响因素的差异,并对厦门市1991—2010年食物源碳氮磷城市代谢进行案例分析。结果表明,食物源碳氮磷城市代谢中通量最大的代谢路径是"食物—食物摄入—人体粪尿—未还田粪尿—污水处理—污泥—污泥填埋—土壤";食物源碳氮磷城市代谢主要引起土壤和水体的环境负荷加重;厨余垃圾中碳氮磷占食物源的比例分别为13.7%、32.2%、70.3%,在整个代谢过程中具有最大的减量管理潜力。提出优化代谢过程、减少碳氮磷环境负荷的若干对策建议,包括增大食物的有效食用比例、资源化利用污泥和厨余垃圾等。  相似文献   

17.
Food action plans in many global cities articulate interest in multiple objectives including reducing in‐ and trans‐boundary environmental impacts (water, land, greenhouse gas (GHG)). However, there exist few standardized analytical tools to compare food system characteristics and actions across cities and countries to assess trade‐offs between multiple objectives (i.e., health, equity) with environmental outcomes. This paper demonstrates a streamlined model applied for analysis of four cities with varying characteristics across the United States and India, to quantify system‐wide water, energy/GHG, and land impacts associated with multiple food system actions to address health, equity, and environment. Baseline diet analysis finds key differences between countries in terms of meat consumption (Delhi 4; Pondicherry 16; United States 59, kg/capita/year), and environmental impact of processing of the average diet (21%, 19%, <1%, <1% of community‐wide GHG‐emissions for New York, Minneapolis, Delhi, and Pondicherry). Analysis of supply chains finds city average distance (food‐miles) varies (Delhi 420; Pondicherry 200; United States average 1,640 km/t‐food) and the sensitivity of GHG emissions of food demand to spatial variability of energy intensity of irrigation is greater in Indian than US cities. Analysis also finds greater pre‐consumer waste in India versus larger post‐consumer accumulations in the United States. Despite these differences in food system characteristics, food waste management and diet change consistently emerge as key strategies. Among diet scenarios, all vegetarian diets are not found equal in terms of environmental benefit, with the US Government's recommended vegetarian diet resulting in less benefit than other more focused targeted diet changes.  相似文献   

18.
This article presents a framework to evaluate emerging systems in life cycle assessment (LCA). Current LCA methods are effective for established systems; however, lack of data often inhibits robust analysis of future products or processes that may benefit the most from life cycle information. In many cases the life cycle inventory (LCI) of a system can change depending on its development pathway. Modeling emerging systems allows insights into probable trends and a greater understanding of the effect of future scenarios on LCA results. The proposed framework uses Bayesian probabilities to model technology adoption. The method presents a unique approach to modeling system evolution and can be used independently or within the context of an agent‐based model (ABM). LCA can be made more robust and dynamic by using this framework to couple scenario modeling with life cycle data, analyzing the effect of decision‐making patterns over time. Potential uses include examining the changing urban metabolism of growing cities, understanding the development of renewable energy technologies, identifying transformations in material flows over space and time, and forecasting industrial networks for developing products. A switchgrass‐to‐energy case demonstrates the approach.  相似文献   

19.
To analyze and promote resource efficiency in urban areas, it is important to characterize urban metabolism and particularly, material flows. Material flow analysis (MFA) offers a means to capture the dynamism of cities and their activities. Urban‐scale MFAs have been conducted in many cities, usually employing variants of the Eurostat methodology. However, current methodologies generally reduce the study area into a “black box,” masking details of the complex processes within the city's metabolism. Therefore, besides the aggregated stocks and flows of materials, the movement of materials—often embedded in goods or commodities—should also be highlighted. Understanding the movement and dispersion of goods and commodities can allow for more detailed analysis of material flows. We highlight the potential benefits of using high‐resolution urban commodity flows in the context of understanding material resource use and opportunities for conservation. Through the use of geographic information systems and visualizations, we analyze two spatially explicit datasets: (1) commodity flow data in the United States, and (2) Global Positioning System‐based commercial vehicle (truck) driver activity data in Singapore. In the age of “big data,” we bring advancements in freight data collection to the field of urban metabolism, uncovering the secondary sourcing of materials that would otherwise have been masked in typical MFA studies. This brings us closer to a consumption‐based, finer‐resolution approach to MFA, which more effectively captures human activities and its impact on urban environments.  相似文献   

20.
Sustainability of urban areas is paramount in the coming years as cities continue to grow in population and resource consumption. A number of methods to model cities have been developed, including material flow analysis and urban metabolism, but these accounting methods do not fully analyze the complex network dynamics present within cities. Ecological network analysis (ENA) provides a new perspective into these urban areas by using metrics designed for analysis of natural ecosystems. This study analyzes 29 urban–industrial ecosystems using ENA, comparing the networks to each other as well as comparing them to previously analyzed eco‐industrial parks and natural food webs. It is found that these systems perform similar to other human‐designed systems, which consistently lack in ecological performance when compared with the natural ecosystems. Additionally, the impact of specific actor types within these networks is shown indicating the importance of industry, agriculture, and the natural environment. Finally, the types of networks are determined to affect the ecological metrics, with the more linear‐based energy networks having the worst performance. This new dataset of ecologically analyzed networks provides a deeper understanding of urban networks and their infrastructure, while providing useful information on how to potentially improve their sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号